We study the complexity of closure operators, with applications to machine learning and decision theory. In machine learning, closure operators emerge naturally in data classification and clustering. In decision theory, they can model equivalence of choice menus, and therefore situations with a preference for flexibility. Our contribution is to formulate a notion of complexity of closure operators, which translate into the complexity of a classifier in ML, or of a utility function in decision theory.
翻译:我们研究关闭经营人的复杂性,并研究机器学习和决策理论的应用。在机器学习中,关闭经营人自然地出现在数据分类和分组中。在决定理论中,他们可以模拟选择菜单的等同性,因此可以选择灵活性。 我们的贡献是形成关闭经营人的复杂性概念,这转化成ML分类员的复杂性,或者决定理论中的实用功能的复杂性。