We prove algorithmic weak and \Szemeredi{} regularity lemmas for several classes of sparse graphs in the literature, for which only weak regularity lemmas were previously known. These include core-dense graphs, low threshold rank graphs, and (a version of) $L^p$ upper regular graphs. More precisely, we define \emph{cut pseudorandom graphs}, we prove our regularity lemmas for these graphs, and then we show that cut pseudorandomness captures all of the above graph classes as special cases. The core of our approach is an abstracted matrix decomposition, roughly following Frieze and Kannan [Combinatorica '99] and \Lovasz{} and Szegedy [Geom.\ Func.\ Anal.\ '07], which can be computed by a simple algorithm by Charikar [AAC0 '00]. This gives rise to the class of cut pseudorandom graphs, and using work of Oveis Gharan and Trevisan [TOC '15], it also implies new PTASes for MAX-CUT, MAX-BISECTION, MIN-BISECTION for a significantly expanded class of input graphs. (It is NP Hard to get PTASes for these graphs in general.)
翻译:在文献中,我们证明数类稀有图表的算法薄弱,并证明其常规值为正常值,而文献中的几类稀有图表,以前只知道其常规值低。其中包括核心感官图、低门槛级图和(一个版本的)$L ⁇ p$最高正态图。更准确地说,我们定义了这些图表的规律值,我们证明这些图表的规律值是正常值,然后我们表明,削减假冒图将上述所有图表类都作为特例。我们方法的核心是抽象的矩阵分解,大致沿Freeze和Kannan[Combinatorica '99]以及\Lovasz ⁇ 和Szegedy[Geom.\ func.\ Anal.\ '07],这可以用Charikar [AAC0 '00] 的简单算算法来计算。这让刻度图的类别得以提升,并使用Oveis Gharan和Trevisan[TO'C'Comina'99] 和\ Lovas'Lovas a 类的新的MA-C-C-NIS Glas 扩展图(MAX) 也意味着新的PTAST-CIS Glas Glas Glas Glas Glas Glas Glas的新的PIT-S-S 扩展图。