Many imaging inverse problems$\unicode{x2014}$such as image-dependent in-painting and dehazing$\unicode{x2014}$are challenging because their forward models are unknown or depend on unknown latent parameters. While one can solve such problems by training a neural network with vast quantities of paired training data, such paired training data is often unavailable. In this paper, we propose a generalized framework for training image reconstruction networks when paired training data is scarce. In particular, we demonstrate the ability of image denoising algorithms and, by extension, denoising diffusion models to supervise network training in the absence of paired training data.
翻译:许多成像反问题,例如图像依赖的修补和去雾问题,是具有挑战性的,因为它们的正向模型是未知的或依赖于未知的潜在参数。虽然可以通过使用大量成对的训练数据对神经网络进行训练来解决这些问题,但是这些对训练数据通常不可用。在本文中,我们提出了一个广义的框架,用于在成对训练数据不足的情况下训练图像重建网络。我们特别展示了图像去噪算法以及扩散模型去噪监督网络训练的能力。