Parsing spoken dialogue poses unique difficulties, including disfluencies and unmarked boundaries between sentence-like units. Previous work has shown that prosody can help with parsing disfluent speech (Tran et al. 2018), but has assumed that the input to the parser is already segmented into sentence-like units (SUs), which isn't true in existing speech applications. We investigate how prosody affects a parser that receives an entire dialogue turn as input (a turn-based model), instead of gold standard pre-segmented SUs (an SU-based model). In experiments on the English Switchboard corpus, we find that when using transcripts alone, the turn-based model has trouble segmenting SUs, leading to worse parse performance than the SU-based model. However, prosody can effectively replace gold standard SU boundaries: with prosody, the turn-based model performs as well as the SU-based model (90.79 vs. 90.65 F1 score, respectively), despite performing two tasks (SU segmentation and parsing) rather than one (parsing alone). Analysis shows that pitch and intensity features are the most important for this corpus, since they allow the model to correctly distinguish an SU boundary from a speech disfluency -- a distinction that the model otherwise struggles to make.


翻译:解析口述对话带来了独特的困难, 包括混乱和类似句式单元之间没有标记的界限。 先前的工作已经表明, 假肢可以帮助解析排泄性言论( Tran 等人, 2018年), 但假设对读取器的输入已经分割成类似句式的单元( SUs), 而在现有的语音应用程序中, 情况并非如此。 我们调查了作曲会如何影响作为输入( 以转折为基础的模型) 接受整个对话转折( 以转折为基础的模型) 的剖析器, 而不是金质标准前的SUs( 以 SU 为基础的模型) 。 在英国交换机堆的实验中, 我们发现, 仅使用笔录, 转基因模型会给解析 Sups 带来麻烦, 导致比基于 SUs 的模型更差的性能。 然而, 作曲型模型可以有效地取代金质标准SU的界限: 以 Prosordy、 turn- basy 和 suble 模式( 90. 90. 65 F1 评分) ), 尽管执行两项任务( Suplement and parding) exparding) 而不是一个模型。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
一文读懂依存句法分析
AINLP
16+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
0+阅读 · 2021年7月15日
A Sketch-Based System for Semantic Parsing
Arxiv
4+阅读 · 2019年9月12日
Arxiv
7+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2018年11月14日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
一文读懂依存句法分析
AINLP
16+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Top
微信扫码咨询专知VIP会员