This paper proposes a computational approach to form-find pin-jointed, bar structures subjected to combinations of tension and compression forces. The generated equilibrium states can meet force and geometric constraints via gradient-based optimization. We achieve this by extending the combinatorial equilibrium modeling (CEM) framework in three important ways. First, we introduce a new topological object, the auxiliary trail, to expand the range of structures that can be form-found with the framework. Then, we leverage automatic differentiation (AD) to obtain an exact value of the gradient of the sequential and iterative calculations of the CEM form-finding algorithm, instead of a numerical approximation. Finally, we encapsulate our research developments into an open-source design tool written in Python that is usable across different CAD platforms and operating systems. After studying four different structures -- a self-stressed planar tensegrity, a tree canopy, a curved bridge, and a spiral staircase -- we demonstrate that our approach enables the solution of constrained form-finding problems on a diverse range of structures more efficiently than in previous work.


翻译:本文建议了一种计算方法, 以形状式针形连接, 条形结构, 受到压力和压缩力的组合。 生成的平衡状态可以通过基于梯度的优化满足力量和几何限制。 我们通过将组合平衡模型框架扩展为三大重要方式, 实现这一点。 首先, 我们引入一个新的表层对象, 辅助路径, 以扩大与框架可以形成的结构范围。 然后, 我们利用自动差异( AD) 来获取CEM 形式调查算法的顺序和迭代计算梯度的精确值, 而不是数字近似值。 最后, 我们将我们的研究发展纳入一个以Python 书写的、 在不同 CAD 平台和操作系统中使用的开源设计工具。 在研究了四个不同的结构之后, 我们用的方法使得各种结构的受限制的形式调查问题得以解决, 比以前的工作效率更高。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员