In this paper, we examine how generative machine learning systems produce a new politics of visual culture. We focus on DALL-E 2 and related models as an emergent approach to image-making that operates through the cultural techniques of feature extraction and semantic compression. These techniques, we argue, are inhuman, invisual, and opaque, yet are still caught in a paradox that is ironically all too human: the consistent reproduction of whiteness as a latent feature of dominant visual culture. We use Open AI's failed efforts to 'debias' their system as a critical opening to interrogate how systems like DALL-E 2 dissolve and reconstitute politically salient human concepts like race. This example vividly illustrates the stakes of this moment of transformation, when so-called foundation models reconfigure the boundaries of visual culture and when 'doing' anti-racism means deploying quick technical fixes to mitigate personal discomfort, or more importantly, potential commercial loss.
翻译:在本文中, 我们研究基因化机器学习系统如何产生一种新的视觉文化政治。 我们关注DALL- E 2 及相关模型, 将其作为通过地物提取和语义压缩等文化技术运作的图像制作的新兴方法。 我们认为, 这些技术是不人道的, 视觉的, 并且不透明, 但是仍然被一个具有讽刺意义的悖论所困住: 白化的不断复制是占支配地位的视觉文化的一个潜在特征。 我们使用开放的 AI 失败的“ 贬低” 系统作为关键开口, 以质问像 DALL- E 2 这样的系统是如何溶解和重组像种族这样的具有政治显著意义的人类概念的。 这个例子生动地说明了这一转变时刻的利害关系, 当所谓的基础模型重组视觉文化的界限, 当“ 做反种族主义行动” 意味着运用快速的技术修正来减轻个人不适, 或者更重要的是, 潜在的商业损失。