The rise of machine learning technology inspires a boom of its applications in electronic design automation (EDA) and helps improve the degree of automation in chip designs. However, manually crafted machine learning models require extensive human expertise and tremendous engineering efforts. In this work, we leverage neural architecture search (NAS) to automatically develop high-quality neural architectures for routability prediction, which guides cell placement toward routable solutions. Experimental results demonstrate that the automatically generated neural architectures clearly outperform the manual solutions. Compared to the average case of manually designed models, NAS-generated models achieve $5.6\%$ higher Kendall's $\tau$ in predicting the number of nets with DRC violations and $1.95\%$ larger area under ROC curve (ROC-AUC) in DRC hotspots detection.
翻译:机器学习技术的兴起刺激了其在电子设计自动化(EDA)中的应用,有助于提高芯片设计自动化的程度,然而,手工制作的机器学习模型需要广泛的人材专长和巨大的工程努力。在这项工作中,我们利用神经结构搜索(NAS)自动开发高质量的神经结构,以进行可逆转性预测,引导细胞定位到可移动的解决方案。实验结果显示,自动生成的神经结构明显超过人工解决方案。与人工设计模型的平均情况相比,NAS生成的模型在预测刚果民主共和国违规蚊帐数量和刚果民主共和国热点探测ROC曲线(ROC-AUC)下更大面积的195美元方面实现了5.6美元以上肯德尔的美元。