Advances in multi-spectral detectors are causing a paradigm shift in X-ray Computed Tomography (CT). Spectral information acquired from these detectors can be used to extract volumetric material composition maps of the object of interest. If the materials and their spectral responses are known a priori, the image reconstruction step is rather straightforward. If they are not known, however, the maps as well as the responses need to be estimated jointly. A conventional workflow in spectral CT involves performing volume reconstruction followed by material decomposition, or vice versa. However, these methods inherently suffer from the ill-posedness of the joint reconstruction problem. To resolve this issue, we propose 'A Dictionary-based Joint reconstruction and Unmixing method for Spectral Tomography' (ADJUST). Our formulation relies on forming a dictionary of spectral signatures of materials common in CT and prior knowledge of the number of materials present in an object. In particular, we decompose the spectral volume linearly in terms of spatial material maps, a spectral dictionary, and the indicator of materials for the dictionary elements. We propose a memory-efficient accelerated alternating proximal gradient method to find an approximate solution to the resulting bi-convex problem. From numerical demonstrations on several synthetic phantoms, we observe that ADJUST performs exceedingly well compared to other state-of-the-art methods. Additionally, we address the robustness of ADJUST against limited and noisy measurement patterns. The demonstration of the proposed approach on a spectral micro-CT dataset shows its potential for real-world applications. Code is available at https://github.com/mzeegers/ADJUST.
翻译:多光谱探测器的进展正在导致X射线成像仪(CT)的范式转变。 从这些探测器获得的光谱信息可以用来提取受关注对象的体积材料组成图。如果材料及其光谱反应是先验的,图像重建步骤就相当简单。如果这些材料及其光谱反应不为人知,则地图和反应需要共同估计。光谱CT的常规工作流程涉及进行体积重建,随后进行材料分解,反之亦然。然而,这些方法本身就受到联合重建问题的不良影响。为解决这一问题,我们提议“基于二字形的联合重建模式和透视目标对象的混合方法”。如果材料及其光谱成像反应是先先知的,则图像重建步骤相当简单。特别是,我们用空间材料地图、光谱字典应用和字典要素的素量度指标,我们建议从中间的正交替的正对准的正成像法(AADJ),然后用其他的光谱分析方法,我们用一个从恒定调的正交替的正交替的正态的正态测量方法,然后用其他的正态的正态数据演示方法,我们用一个对正态的正态的正态的正态的正态的正态的正态方法,然后用亚化的正态的正态的正态的正态的正态方法, 。我们用一个比的正态的正态的正态的正态的正态方法,在比的正态的正态的正态的正态方法,我们方程式的正态的正态的正态的正态的正态方法,在比的比的正态的比的比的比的比的比的比的比的比的比的比的比的比的比的方法,我们的比的亚的比的比的比的方法,我们的比的变的比的比的亚的亚的比的亚的比的亚的亚的亚的比的亚的比的比的比的比的比的比的比的比的比的比的比的比的比的比的比的亚的亚的比的比的比的比的比的比的比的比的比的比的比的变的比的更的变的比的比的比的比的比的