Attacks from adversarial machine learning (ML) have the potential to be used "for good": they can be used to run counter to the existing power structures within ML, creating breathing space for those who would otherwise be the targets of surveillance and control. But most research on adversarial ML has not engaged in developing tools for resistance against ML systems. Why? In this paper, we review the broader impact statements that adversarial ML researchers wrote as part of their NeurIPS 2020 papers and assess the assumptions that authors have about the goals of their work. We also collect information about how authors view their work's impact more generally. We find that most adversarial ML researchers at NeurIPS hold two fundamental assumptions that will make it difficult for them to consider socially beneficial uses of attacks: (1) it is desirable to make systems robust, independent of context, and (2) attackers of systems are normatively bad and defenders of systems are normatively good. That is, despite their expressed and supposed neutrality, most adversarial ML researchers believe that the goal of their work is to secure systems, making it difficult to conceptualize and build tools for disrupting the status quo.


翻译:来自对抗机器学习(ML)的攻击有可能被“永久地”使用:这些攻击可以被用来与ML内部现有的权力结构背道而驰,为那些本来会成为监视和控制对象的人创造呼吸空间。但是,大多数关于对抗ML的研究并没有开发对抗ML系统的工具。为什么?在本文中,我们审查了敌对ML研究人员作为其NeurIPS 2020年论文的一部分所撰写的更广泛的影响声明,并评估了作者对其工作目标的假设。我们还收集了作者如何更全面地看待其工作影响的信息。我们发现,NeurIPS的大多数对抗ML研究人员持有两种基本假设,使他们难以考虑对社会有利的攻击使用:(1) 使系统强大、独立于环境,(2) 攻击系统者在规范上是坏的,捍卫系统者在规范上是好的。 这正是大多数对抗ML研究人员尽管表达和假定中立,但认为他们的工作目标是确保系统的安全,使其难以概念化和构建破坏现状的工具。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
相关论文
Top
微信扫码咨询专知VIP会员