A multivariate Hawkes process enables self- and cross-excitations through a triggering matrix that behaves like an asymmetrical covariance structure, characterizing pairwise interactions between the event types. Full-rank estimation of all interactions is often infeasible in empirical settings. Models that specialize on a spatiotemporal application alleviate this obstacle by exploiting spatial locality, allowing the dyadic relationships between events to depend only on separation in time and relative distances in real Euclidean space. Here we generalize this framework to any multivariate Hawkes process, and harness it as a vessel for embedding arbitrary event types in a hidden metric space. Specifically, we propose a Hidden Hawkes Geometry (HHG) model to uncover the hidden geometry between event excitations in a multivariate point process. The low dimensionality of the embedding regularizes the structure of the inferred interactions. We develop a number of estimators and validate the model by conducting several experiments. In particular, we investigate regional infectivity dynamics of COVID-19 in an early South Korean record and recent Los Angeles confirmed cases. By additionally performing synthetic experiments on short records as well as explorations into options markets and the Ebola epidemic, we demonstrate that learning the embedding alongside a point process uncovers salient interactions in a broad range of applications.
翻译:多变量的霍克斯进程通过一个触发矩阵使自我和交叉探索能够自我和交叉探索,这种矩阵表现得像一个不对称的共变结构,使事件类型之间的相互作用具有特征。 对所有相互作用的全面估计在经验环境中往往不可行。 专门用于空间应用的模型通过利用空间位置来缓解这一障碍,使事件之间的双轨关系仅取决于时间和相对距离的分离,在实际的欧几里德空间中,我们在这里将这一框架概括为任何多变的霍克斯进程,并把它用作将任意事件类型嵌入隐藏的度量空间的容器。具体地说,我们提议一个隐藏的霍克斯几何测地模型(HHG)模型,以发现多变量进程中的事件引力之间的隐藏的几何测量方法。 嵌入的维度低维度使推断互动结构得以调节。 我们通过进行若干试验来开发一些估计和验证模型。 我们特别调查了南韩早期记录和最近洛杉矶记录中COVID-19的区域感染动态动态动态,并将其作为容器确认的案例。我们通过在广泛探索性市场中进行一系列的深度实验,从而将大规模实验,在不断学习一系列的概率实验。