Classical graph modeling approaches such as Erd\H{o}s R\'{e}nyi (ER) random graphs or Barab\'asi-Albert (BA) graphs, here referred to as stylized models, aim to reproduce properties of real-world graphs in an interpretable way. While useful, graph generation with stylized models requires domain knowledge and iterative trial and error simulation. Previous work by Stoehr et al. (2019) addresses these issues by learning the generation process from graph data, using a disentanglement-focused deep autoencoding framework, more specifically, a $\beta$-Variational Autoencoder ($\beta$-VAE). While they successfully recover the generative parameters of ER graphs through the model's latent variables, their model performs badly on sequentially generated graphs such as BA graphs, due to their oversimplified decoder. We focus on recovering the generative parameters of BA graphs by replacing their $\beta$-VAE decoder with a sequential one. We first learn the generative BA parameters in a supervised fashion using a Graph Neural Network (GNN) and a Random Forest Regressor, by minimizing the squared loss between the true generative parameters and the latent variables. Next, we train a $\beta$-VAE model, combining the GNN encoder from the first stage with an LSTM-based decoder with a customized loss.
翻译:古典图形模型方法,如Erd\H{o}s R\{{e}nyi (ER) 随机图或Barab\'asi-Albert(BA) 图,这里称为Styliz化模型,目的是以可解释的方式复制真实世界图的属性。虽然有用,但使用Styliz化模型的图形生成需要域知识以及迭接试验和误差模拟。Stoehr等人(2019年)以前的工作是解决这些问题的,方法是从图形数据中学习生成过程,具体地说,使用一个以美元为主的深度自动解析框架,更具体地说,即一个以美元为主的定制的定制自动自动自动解析器($\beta$-VaE)图。虽然它们成功地通过模型的潜在变量复制了真实世界图的基因化参数。但是,由于BABA图过于简单化的解析,因此其模型的基因化参数被恢复了。我们首先从一个依次的美元-VAED-VA值模型中,用一个将G-N-N-BER的模型与一个新的RE-revil-ration-reval IM Best-ral IM 模型的模型进行监管的模型化的模型,我们先从一个对Best-ral-ral-ral-real-real-real-real的模型的模型学的模型进行观察的模型学习。