We offer a method for one-shot image synthesis that allows controlling manipulations of a single image by inverting a quasi-robust classifier equipped with strong regularizers. Our proposed method, entitled Magic, samples structured gradients from a pre-trained quasi-robust classifier to better preserve the input semantics while preserving its classification accuracy, thereby guaranteeing credibility in the synthesis. Unlike current methods that use complex primitives to supervise the process or use attention maps as a weak supervisory signal, Magic aggregates gradients over the input, driven by a guide binary mask that enforces a strong, spatial prior. Magic implements a series of manipulations with a single framework achieving shape and location control, intense non-rigid shape deformations, and copy/move operations in the presence of repeating objects and gives users firm control over the synthesis by requiring simply specifying binary guide masks. Our study and findings are supported by various qualitative comparisons with the state-of-the-art on the same images sampled from ImageNet and quantitative analysis using machine perception along with a user survey of 100+ participants that endorse our synthesis quality.
翻译:我们提供了一种一发图像合成方法,允许对单一图像进行控制操纵,办法是将配备了强大规范器的准机器人分类器倒转。我们提议的方法题为“魔术”,从经过预先训练的准机器人分类器中抽取结构梯度,以便更好地保存输入语义,同时保持其分类准确性,从而保证合成的可信度。与目前使用复杂的原始物来监督过程或使用关注地图作为薄弱监督信号的方法不同,魔法聚合物对输入物的梯度,由使用强力、空间先行的指南双面罩驱动。魔法实施了一系列操作,采用单一框架实现形状和位置控制、强度非硬性形状变形、在重复物体出现时复制/移动操作,并使用户对合成进行严格控制,只需指定二元制导面罩即可。我们的研究和研究结果得到各种定性比较的支持,这些定性比较来自图像网络和定量分析的同一图象的状态图象,同时利用机器认知对100+参与者进行用户调查,认可我们的合成质量。