We develop the notion of discrete degrees of freedom of a log-concave sequence and use it to prove that the quantity $\mathbb{P}(X=\mathbb{E} X)$ is maximized, under fixed integral mean, for a Poisson distribution.
翻译:我们开发了对数组合序列自由度的离散度概念,并用它来证明美元=mathbb{P}(X ⁇ mathb{E}X)是按固定整体平均值为 Poisson 分配量最大化的。