We consider the facility location problem in two dimensions. In particular, we consider a setting where agents have Euclidean preferences, defined by their ideal points, for a facility to be located in $\mathbb{R}^2$. We show that for the $p-norm$ ($p \geq 1$) objective, the coordinate-wise median mechanism (CM) has the lowest worst-case approximation ratio in the class of deterministic, anonymous, and strategyproof mechanisms. For the minisum objective and an odd number of agents $n$, we show that CM has a worst-case approximation ratio (AR) of $\sqrt{2}\frac{\sqrt{n^2+1}}{n+1}$. For the $p-norm$ social cost objective ($p\geq 2$), we find that the AR for CM is bounded above by $2^{\frac{3}{2}-\frac{2}{p}}$. We conjecture that the AR of CM actually equals the lower bound $2^{1-\frac{1}{p}}$ (as is the case for $p=2$ and $p=\infty$) for any $p\geq 2$.
翻译:我们从两个方面来考虑设施地点问题。 特别是, 我们考虑一种环境, 使代理商在理想点上拥有欧洲的偏好, 以美元为单位。 我们显示, 对于美元- norm$ (p\ geq 1美元)的目标, 协调的中位机制(CM) 在确定性、 匿名和防战略机制的类别中, 最差的近似比率最低。 对于微型和奇数的代理商而言, 我们推测, CM 最差的近似比率(AR) 为 $\ qrt{ 2\\\ 弗拉克{ sqrt{n2+1\ n+1}美元。 对于美元-norm$的社会成本目标(p\ q 2美元), 我们发现, 用于 CM 的AR 受2 perfc {3\ 2\ f\ p 美元 的制约。 我们推测, 对于任何情况下, CM AR 实际上等于 $1- $1\\ p\ p= 美元。