Humans are naturally endowed with the ability to write in a particular style. They can, for instance, rephrase a formal letter in an informal way, convey a literal message with the use of figures of speech, edit a novel mimicking the style of some well-known authors. Automating this form of creativity constitutes the goal of style transfer. As a natural language generation task, style transfer aims at re-writing existing texts, and specifically, it creates paraphrases that exhibit some desired stylistic attributes. From a practical perspective, it envisions beneficial applications, like chat-bots that modulate their communicative style to appear empathetic, or systems that automatically simplify technical articles for a non-expert audience. Style transfer has been dedicated several style-aware paraphrasing methods. A handful of surveys give a methodological overview of the field, but they do not support researchers to focus on specific styles. With this paper, we aim at providing a comprehensive discussion of the styles that have received attention in the transfer task. We organize them into a hierarchy, highlighting the challenges for the definition of each of them, and pointing out gaps in the current research landscape. The hierarchy comprises two main groups. One encompasses styles that people modulate arbitrarily, along the lines of registers and genres. The other group corresponds to unintentionally expressed styles, due to an author's personal characteristics. Hence, our review shows how the groups relate to one another, and where specific styles, including some that have never been explored, belong in the hierarchy. Moreover, we summarize the methods employed for different stylistic families, hinting researchers towards those that would be the most fitting for future research.


翻译:自然而然地赋予人类以特定风格写作的能力。 例如,他们可以以非正式的方式改写正式信件,通过使用语言数字传达字面信息,用语言数字表达字面信息,编辑模仿一些著名作者的风格的新书。 将这种创作形式自动化是风格传输的目标。 作为自然语言生成的任务,风格传输的目的是重写现有文本,具体地说,它创建了能够显示某种需要的文体特征的引言句。从实际角度,它设想了有益的应用,例如调整其交流风格的聊天机,以显示同情性,或者自动简化非专家读者的技术文章的风格。 风格转换是专门用几种风格觉悟的翻版方法。 少数调查提供了对域的方法学概览, 但是它们并不支持研究人员专注于特定的风格。 有了这份文件,我们的目的是全面讨论转移任务中所关注的风格。 我们把它们组织成一个层次,强调每个风格的风格的挑战, 探索每个风格的风格, 或系统自动简化技术文章的顺序, 展示了不同层次的层次, 显示另一种结构的顺序, 代表了另一种结构, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织, 组织,

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
126+阅读 · 2020年9月6日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员