Graph neural networks exhibit remarkable performance in graph data analysis. However, the robustness of GNN models remains a challenge. As a result, they are not reliable enough to be deployed in critical applications. Recent studies demonstrate that GNNs could be easily fooled with adversarial perturbations, especially structural perturbations. Such vulnerability is attributed to the excessive dependence on the structure information to make predictions. To achieve better robustness, it is desirable to build the prediction of GNNs with more comprehensive features. Graph data, in most cases, has two views of information, namely structure information and feature information. In this paper, we propose CoG, a simple yet effective co-training framework to combine these two views for the purpose of robustness. CoG trains sub-models from the feature view and the structure view independently and allows them to distill knowledge from each other by adding their most confident unlabeled data into the training set. The orthogonality of these two views diversifies the sub-models, thus enhancing the robustness of their ensemble. We evaluate our framework on three popular datasets, and results show that CoG significantly improves the robustness of graph models against adversarial attacks without sacrificing their performance on clean data. We also show that CoG still achieves good robustness when both node features and graph structures are perturbed.


翻译:图表神经网络在图形数据分析中表现出惊人的性能。然而,GNN模型的稳健性仍是一个挑战。因此,GNN模型不够可靠,无法在关键应用程序中部署。最近的研究显示,GNN模型很容易被对抗性扰动,特别是结构扰动。这种脆弱性是由于过分依赖结构信息来作出预测。为了实现更稳健性,有必要建立具有更全面性特征的GNN的预测。图表数据在大多数情况下,对信息有两种观点,即结构信息和特征信息。我们在本文件中建议,COG是一个简单而有效的共同培训框架,将这两种观点结合起来,以便实现稳健性。COG从特征视图和结构观点中培训子模型,独立地通过将最自信的、无标签的数据添加到培训数据集中来吸收彼此的知识。这两种观点的分解性能使子模型具有两种观点,从而增强其组合的稳健性。我们在三份大众数据集上评估了我们的框架,但结果显示,CG从功能视角和结构中也明显地显示,CG公司的稳健性模型在不见强性强性地表明,因此,CG公司的模型在不具有稳健健健健的图表上均。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年5月19日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月30日
Arxiv
0+阅读 · 2021年10月29日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员