Joint detection and embedding (JDE) based methods usually estimate bounding boxes and embedding features of objects with a single network in Multi-Object Tracking (MOT). In the tracking stage, JDE-based methods fuse the target motion information and appearance information by applying the same rule, which could fail when the target is briefly lost or blocked. To overcome this problem, we propose a new association matrix, the Embedding and Giou matrix, which combines embedding cosine distance and Giou distance of objects. To further improve the performance of data association, we develop a simple, effective tracker named SimpleTrack, which designs a bottom-up fusion method for Re-identity and proposes a new tracking strategy based on our EG matrix. The experimental results indicate that SimpleTrack has powerful data association capability, e.g., 61.6 HOTA and 76.3 IDF1 on MOT17. In addition, we apply the EG matrix to 5 different state-of-the-art JDE-based methods and achieve significant improvements in IDF1, HOTA and IDsw metrics, and increase the tracking speed of these methods by about 20%.


翻译:联合探测和嵌入(JDE)基于联合探测和嵌入(JDE)的方法通常估计多目标跟踪(MOT)中带有单一网络的物体的捆绑箱和嵌入特征。在跟踪阶段,基于JDE的方法采用同样的规则,将目标运动信息和外观信息结合起来,如果目标短暂丢失或被阻断,则可能失败。为了解决这一问题,我们提议一个新的联系矩阵,即嵌入和Giou 矩阵,将嵌入式和Giou 物体的距离结合起来。为了进一步改善数据组合的性能,我们开发了一个简单、有效的跟踪器,名为“简单跟踪器”,设计了一种自下而上的“身份”聚合方法,并根据我们的EG矩阵提出了新的跟踪战略。实验结果表明,“简易跟踪”具有强大的数据关联能力,例如61.6 HOTA和76.3 UNFD1在MOT17上。此外,我们将EG矩阵应用于5种以先进方式嵌入的“JDE”方法,并在以色列国防军1、HOATA和IDsw测量仪中实现重大改进,并将这些方法的跟踪速度提高约20%。

0
下载
关闭预览

相关内容

【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Towards PAC Multi-Object Detection and Tracking
Arxiv
0+阅读 · 2022年4月15日
Arxiv
17+阅读 · 2021年3月29日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
57+阅读 · 2019年7月31日
VIP会员
相关VIP内容
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员