Joint detection and embedding (JDE) based methods usually estimate bounding boxes and embedding features of objects with a single network in Multi-Object Tracking (MOT). In the tracking stage, JDE-based methods fuse the target motion information and appearance information by applying the same rule, which could fail when the target is briefly lost or blocked. To overcome this problem, we propose a new association matrix, the Embedding and Giou matrix, which combines embedding cosine distance and Giou distance of objects. To further improve the performance of data association, we develop a simple, effective tracker named SimpleTrack, which designs a bottom-up fusion method for Re-identity and proposes a new tracking strategy based on our EG matrix. The experimental results indicate that SimpleTrack has powerful data association capability, e.g., 61.6 HOTA and 76.3 IDF1 on MOT17. In addition, we apply the EG matrix to 5 different state-of-the-art JDE-based methods and achieve significant improvements in IDF1, HOTA and IDsw metrics, and increase the tracking speed of these methods by about 20%.
翻译:联合探测和嵌入(JDE)基于联合探测和嵌入(JDE)的方法通常估计多目标跟踪(MOT)中带有单一网络的物体的捆绑箱和嵌入特征。在跟踪阶段,基于JDE的方法采用同样的规则,将目标运动信息和外观信息结合起来,如果目标短暂丢失或被阻断,则可能失败。为了解决这一问题,我们提议一个新的联系矩阵,即嵌入和Giou 矩阵,将嵌入式和Giou 物体的距离结合起来。为了进一步改善数据组合的性能,我们开发了一个简单、有效的跟踪器,名为“简单跟踪器”,设计了一种自下而上的“身份”聚合方法,并根据我们的EG矩阵提出了新的跟踪战略。实验结果表明,“简易跟踪”具有强大的数据关联能力,例如61.6 HOTA和76.3 UNFD1在MOT17上。此外,我们将EG矩阵应用于5种以先进方式嵌入的“JDE”方法,并在以色列国防军1、HOATA和IDsw测量仪中实现重大改进,并将这些方法的跟踪速度提高约20%。