A large amount of high-dimensional and heterogeneous data appear in practical applications, which are often published to third parties for data analysis, recommendations, targeted advertising, and reliable predictions. However, publishing these data may disclose personal sensitive information, resulting in an increasing concern on privacy violations. Privacy-preserving data publishing has received considerable attention in recent years. Unfortunately, the differentially private publication of high dimensional data remains a challenging problem. In this paper, we propose a differentially private high-dimensional data publication mechanism (DP2-Pub) that runs in two phases: a Markov-blanket-based attribute clustering phase and an invariant post randomization (PRAM) phase. Specifically, splitting attributes into several low-dimensional clusters with high intra-cluster cohesion and low inter-cluster coupling helps obtain a reasonable allocation of privacy budget, while a double-perturbation mechanism satisfying local differential privacy facilitates an invariant PRAM to ensure no loss of statistical information and thus significantly preserves data utility. We also extend our DP2-Pub mechanism to the scenario with a semi-honest server which satisfies local differential privacy. We conduct extensive experiments on four real-world datasets and the experimental results demonstrate that our mechanism can significantly improve the data utility of the published data while satisfying differential privacy.


翻译:大量高维和多元数据出现在实际应用中,这些应用往往向第三方公布数据分析、建议、有针对性的广告和可靠的预测;然而,公布这些数据可能披露个人敏感信息,导致对侵犯隐私行为日益关注;近年来,隐私保护数据出版受到相当重视;不幸的是,高维数据的不同私下出版仍然是一个具有挑战性的问题;在本文件中,我们提议建立一个有区别的私人高维数据出版机制(DP2-Pubb),分两个阶段运行:以Markov为基点的属性聚合阶段和无变式后随机化(PRAM)阶段。具体地说,将属性分割成几个低维群,集群内凝聚程度高和集群间混合程度低,有助于获得对隐私预算的合理分配,而满足本地差异隐私的双重扰动性机制则便利了无变式的PRAM,以确保统计信息不丢失,从而大大保护数据效用。我们还将我们的DP2-Pub机制扩展为设想情景,配有满足当地差异隐私的半声波服务器。我们广泛试验了四个真实世界数据机制,同时进行广泛的实用性数据交换。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
论文周报 | 推荐系统领域最新研究进展
机器学习与推荐算法
2+阅读 · 2022年4月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月6日
VIP会员
相关VIP内容
相关资讯
论文周报 | 推荐系统领域最新研究进展
机器学习与推荐算法
2+阅读 · 2022年4月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员