Line-of-sight link blockages represent a key challenge for the reliability and latency of millimeter wave (mmWave) and terahertz (THz) communication networks. This paper proposes to leverage LiDAR sensory data to provide awareness about the communication environment and proactively predict dynamic link blockages before they happen. This allows the network to make proactive decisions for hand-off/beam switching which enhances its reliability and latency. We formulate the LiDAR-aided blockage prediction problem and present the first real-world demonstration for LiDAR-aided blockage prediction in mmWave systems. In particular, we construct a large-scale real-world dataset, based on the DeepSense 6G structure, that comprises co-existing LiDAR and mmWave communication measurements in outdoor vehicular scenarios. Then, we develop an efficient LiDAR data denoising (static cluster removal) algorithm and a machine learning model that proactively predicts dynamic link blockages. Based on the real-world dataset, our LiDAR-aided approach is shown to achieve 95\% accuracy in predicting blockages happening within 100ms and more than 80\% prediction accuracy for blockages happening within one second. If used for proactive hand-off, the proposed solutions can potentially provide an order of magnitude saving in the network latency, which highlights a promising direction for addressing the blockage challenges in mmWave/sub-THz networks.
翻译:视距线链接封隔对于毫米波(mmWave)和Thahertz(Thz)通信网络的可靠性和延缓度是一个关键的挑战。 本文提议利用LIDAR感官数据来提高对通信环境的认识,并主动预测动态链接封隔, 从而使得网络能够主动决定手动交换/ 光束转换, 从而提高其可靠性和延缓度。 我们开发了LIDAR辅助的阻隔预测问题, 并在毫米Wave系统中首次展示了LIDAR辅助阻隔段预测的真实世界演示。 特别是, 我们根据DeepSense 6G结构, 构建了一个大型真实世界方向数据集, 其中包括在室外视觉情景中共同存在的LIDAR和mmWave通信封隔断度测量。 然后, 我们开发了高效的LIDAR数据分流解算法和机器学习模型, 积极主动地预测了动态链接的阻隔断。 根据真实世界数据集, 我们的LIDAR辅助方法显示, 将实现大规模真实性真实性真实性真实性真实性真实性真实性真实性真实性真实性真实性真实性真实性 。 如果预测了80- 的行距网络内,, 预测了80,那么, 预测的预测, 中, 预测的路径性轨道,, 预测了80 的路径性网络中将会出现流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流的精确性在80, 中,则可以实现一个可能的精确性能性 。