Robot systems are increasingly integrating into numerous avenues of modern life. From cleaning houses to providing guidance and emotional support, robots now work directly with humans. Due to their far-reaching applications and progressively complex architecture, they are being targeted by adversarial attacks such as sensor-actuator attacks, data spoofing, malware, and network intrusion. Therefore, security for robotic systems has become crucial. In this paper, we address the underserved area of malware detection in robotic software. Since robots work in close proximity to humans, often with direct interactions, malware could have life-threatening impacts. Hence, we propose the RoboMal framework of static malware detection on binary executables to detect malware before it gets a chance to execute. Additionally, we address the great paucity of data in this space by providing the RoboMal dataset comprising controller executables of a small-scale autonomous car. The performance of the framework is compared against widely used supervised learning models: GRU, CNN, and ANN. Notably, the LSTM-based RoboMal model outperforms the other models with an accuracy of 85% and precision of 87% in 10-fold cross-validation, hence proving the effectiveness of the proposed framework.
翻译:机器人系统正日益融入现代生活的众多途径。从清洁房屋到提供指导和情感支持,机器人现在直接与人类合作。由于机器人具有深远的应用和逐渐复杂的结构,它们正成为对抗性攻击的目标,例如传感器触动器攻击、数据喷雾、恶意软件和网络入侵。因此,机器人系统的安全已变得至关重要。在本文件中,我们处理机器人软件中服务不足的恶意软件检测领域。由于机器人在接近人类的地方工作,往往与直接互动,恶意软件可能会产生危及生命的影响。因此,我们提议在二进制软件上固定性恶意软件检测的机器人模型框架,以便在可操作之前检测恶意软件。此外,我们通过提供由小型自主汽车控制器执行者组成的机器人数据集,解决空间数据严重缺乏的问题。框架的性能与广泛使用的监管学习模式(GRU、CNN和ANNU)相比,恶意软件可能会对生命造成威胁。我们提议,基于LSTM的Robomal模型在二进制软件实施过程中的静态软件检测框架,在操作机会执行之前就检测恶意软件进行检测。此外,我们通过提供这一模型来解决这一空间数据严重缺乏的问题,因为这个模型的精确度为85的准确性框架,并测试了87。