Most of the deep learning-based speech enhancement models are learned in a supervised manner, which implies that pairs of noisy and clean speech are required during training. Consequently, several noisy speeches recorded in daily life cannot be used to train the model. Although certain unsupervised learning frameworks have also been proposed to solve the pair constraint, they still require clean speech or noise for training. Therefore, in this paper, we propose MetricGAN-U, which stands for MetricGAN-unsupervised, to further release the constraint from conventional unsupervised learning. In MetricGAN-U, only noisy speech is required to train the model by optimizing non-intrusive speech quality metrics. The experimental results verified that MetricGAN-U outperforms baselines in both objective and subjective metrics.


翻译:大部分深层次的基于学习的语音强化模式都是以监督方式学习的,这意味着在培训期间需要一对吵闹和清洁的言语,因此,在日常生活中记录的一些吵闹的言语不能用来训练模式。虽然也提议了一些未经监督的学习框架来解决对口限制,但是它们仍然需要清洁的言语或噪音来进行培训。因此,在本文件中,我们提议MetriGAN-U(代表MetriGAN-无人监督的)的MetriGAN-U(MetriGAN-U)进一步解除传统不受监督的学习的制约。在MetriGAN-U(MetriGAN-U)中,只需要吵闹的言语就可以通过优化非侵入性言语质量衡量标准来训练模式。实验结果证实MetriGAN-U(MetriGAN-U)在客观和主观衡量标准上都比基线都强。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2021年6月30日
Phase-aware Speech Enhancement with Deep Complex U-Net
Arxiv
8+阅读 · 2018年11月27日
Arxiv
6+阅读 · 2018年7月29日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员