Despite increasingly fluent, relevant, and coherent language generation, major gaps remain between how humans and machines use language. We argue that a key dimension that is missing from our understanding of language models (LMs) is the model's ability to interpret and generate expressions of uncertainty. Whether it be the weatherperson announcing a chance of rain or a doctor giving a diagnosis, information is often not black-and-white and expressions of uncertainty provide nuance to support human-decision making. The increasing deployment of LMs in the wild motivates us to investigate whether LMs are capable of interpreting expressions of uncertainty and how LMs' behaviors change when learning to emit their own expressions of uncertainty. When injecting expressions of uncertainty into prompts (e.g., "I think the answer is..."), we discover that GPT3's generations vary upwards of 80% in accuracy based on the expression used. We analyze the linguistic characteristics of these expressions and find a drop in accuracy when naturalistic expressions of certainty are present. We find similar effects when teaching models to emit their own expressions of uncertainty, where model calibration suffers when teaching models to emit certainty rather than uncertainty. Together, these results highlight the challenges of building LMs that interpret and generate trustworthy expressions of uncertainty.
翻译:尽管人们和机器使用语言的方式越来越流利、相关和一致,但人类和机器使用语言的方式之间仍然存在重大差距。我们争辩说,我们理解语言模型(LMs)所缺少的一个关键层面是模型解释和产生不确定表现的能力。无论是天气人宣布下雨机会,还是医生诊断,信息往往不是黑白的,不确定性的表达方式为人类决策提供了支持。在野外越来越多地使用LMs,促使我们调查LMs是否有能力解释不确定性的表达方式,以及LMs在学习自己表达不确定性时的行为变化。当将不确定性的表达方式注入提示时(例如,“我认为答案是...”),我们发现GPT3的世代根据所使用的表达方式在准确性方面差异高达80%。我们分析了这些表达方式的语言特征,并在自然的确定性表达方式出现时发现准确性下降。我们发现类似的影响是,当教学模型在教授模型以显示不确定性时,模型在构建确定性而不是不确定性时会遇到什么样的问题。这些结果突出了LPT3的难度。</s>