Recently, large-scale Contrastive Language-Image Pre-training (CLIP) has attracted unprecedented attention for its impressive zero-shot recognition ability and excellent transferability to downstream tasks. However, CLIP is quite data-hungry and requires 400M image-text pairs for pre-training, thereby restricting its adoption. This work proposes a novel training paradigm, Data efficient CLIP (DeCLIP), to alleviate this limitation. We demonstrate that by carefully utilizing the widespread supervision among the image-text pairs, our De-CLIP can learn generic visual features more efficiently. Instead of using the single image-text contrastive supervision, we fully exploit data potential through the use of (1) self-supervision within each modality; (2) multi-view supervision across modalities; (3) nearest-neighbor supervision from other similar pairs. Benefiting from intrinsic supervision, our DeCLIP-ResNet50 can achieve 60.4% zero-shot top1 accuracy on ImageNet, which is 0.8% above the CLIP-ResNet50 while using 7.1 x fewer data. Our DeCLIP-ResNet50 outperforms its counterpart in 8 out of 11 visual datasets when transferred to downstream tasks. Moreover, Scaling up the model and computing also works well in our framework.Our code, dataset and models are released at: https://github.com/Sense-GVT/DeCLIP
翻译:最近,大规模对比性语言图像培训前(CLIP)因其令人印象深刻的零点识别能力和向下游任务的出色可转让性而吸引了前所未有的关注。然而,CLIP非常缺乏数据,需要400M图像文本配对才能进行预培训,从而限制其采用。这项工作提出了一个创新的培训模式,即数据高效 CLIP(DeCLIP),以缓解这一限制。我们通过仔细利用图像文本配对的广泛监督,证明我们的De-CLIP(De-CLIP)可以更有效地学习通用的视觉特征。我们不使用单一图像文本对比性监督,而是充分利用数据潜力,方法是使用:(1)每种模式中的自我监督;(2)跨模式的多视图监督;(3)来自其他类似配对的近邻图像文本监督。我们DCLIP-ResNet50(DeCLIP-ResNet50)在图像网上实现了60.4%的零点1的准确度,这比CLIP-ResNet50高0.8%,而使用的数据更少。我们的DCIP-Res50(Resperforform)在8个模式中超越了它的对应方;(2)多视图监督;(3)(Degilation)在11/CLODLODLODLODLIES)中也将数据转换了。