Let $\mathbf{X}\in\mathbb{C}^{n\times m}$ ($m\geq n$) be a random matrix with independent columns each distributed as complex multivariate Gaussian with zero mean and {\it single-spiked} covariance matrix $\mathbf{I}_n+ \eta \mathbf{u}\mathbf{u}^*$, where $\mathbf{I}_n$ is the $n\times n$ identity matrix, {\color{blue}$\mathbf{u}\in\mathbb{C}^{n\times 1}$} is an arbitrary vector with unit Euclidean norm, $\eta\geq 0$ is a non-random parameter, and $(\cdot)^*$ represents the conjugate-transpose. This paper investigates the distribution of the random quantity $\kappa_{\text{SC}}^2(\mathbf{X})=\sum_{k=1}^n \lambda_k/\lambda_1$, where {\color{blue}$0\le \lambda_1\le \lambda_2\le \ldots\leq \lambda_n<\infty$} are the ordered eigenvalues of $\mathbf{X}\mathbf{X}^*$ (i.e., single-spiked Wishart matrix). This random quantity is intimately related to the so called {\it scaled condition number} or the Demmel condition number (i.e., $\kappa_{\text{SC}}(\mathbf{X})$) and the minimum eigenvalue of the fixed trace Wishart-Laguerre ensemble (i.e., $\kappa_{\text{SC}}^{-2}(\mathbf{X})$). In particular, we use an orthogonal polynomial approach to derive an exact expression for the probability density function of $\kappa_{\text{SC}}^2(\mathbf{X})$ which is amenable to asymptotic analysis as matrix dimensions grow large. Our asymptotic results reveal that, as $m,n\to\infty$ such that $m-n$ is fixed and when $\eta$ scales on the order of $1/n$, $\kappa_{\text{SC}}^2(\mathbf{X})$ scales on the order of $n^3$. In this respect we establish simple closed-form expressions for the limiting distributions. {\color{blue}It turns out that, as $m,n\to\infty$ such that $n/m\to c\in(0,1)$, properly centered $\kappa_{\text{SC}}^{2}(\mathbf{X})$ fluctuates on the scale $m^{\frac{1}{3}}$}.


翻译:Let\mathbf{X}x\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ x\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

SC:International Conference for High Performance Computing, Networking, Storage, and Analysis。 Explanation:高性能计算、网络、存储和分析国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/sc/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月18日
Arxiv
0+阅读 · 2022年7月18日
Perturbation theory of transfer function matrices
Arxiv
0+阅读 · 2022年7月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员