Electromyogram (EMG) has been utilized to interface signals for prosthetic hands and information devices owing to its ability to reflect human motion intentions. Although various EMG classification methods have been introduced into EMG-based control systems, they do not fully consider the stochastic characteristics of EMG signals. This paper proposes an EMG pattern classification method incorporating a scale mixture-based generative model. A scale mixture model is a stochastic EMG model in which the EMG variance is considered as a random variable, enabling the representation of uncertainty in the variance. This model is extended in this study and utilized for EMG pattern classification. The proposed method is trained by variational Bayesian learning, thereby allowing the automatic determination of the model complexity. Furthermore, to optimize the hyperparameters of the proposed method with a partial discriminative approach, a mutual information-based determination method is introduced. Simulation and EMG analysis experiments demonstrated the relationship between the hyperparameters and classification accuracy of the proposed method as well as the validity of the proposed method. The comparison using public EMG datasets revealed that the proposed method outperformed the various conventional classifiers. These results indicated the validity of the proposed method and its applicability to EMG-based control systems. In EMG pattern recognition, a classifier based on a generative model that reflects the stochastic characteristics of EMG signals can outperform the conventional general-purpose classifier.


翻译:电磁图(EMG)由于能够反映人类运动的意图,已被用于连接假肢手部和信息装置的信号。尽管环境管理小组的分类方法已引入基于环境管理小组的控制系统,但并未充分考虑到环境管理小组信号的随机特性;本文件提议了环境管理小组模式分类方法,其中包括一个基于混合物的比重基因化模型。比例混合模型是一种随机变化模型,其中将环境管理小组的差异视为一种随机变量,从而能够反映差异中的不确定性。这一模型在本研究中加以扩展,并用于环境管理小组模式的分类。拟议的方法通过变异性贝叶斯学学习加以培训,从而能够自动确定模型的复杂性。此外,为了以部分歧视性方法优化拟议方法的超参数,采用了一种基于信息的相互确定方法。模拟和环境管理小组分析实验显示了拟议方法的超参数和分类准确性之间的关系,以及拟议方法的有效性。使用公共环境管理小组数据集进行的比较表明,拟议的方法比基于各种常规分类方法的比重高于各种常规分类方法的复杂性。这些结果显示,以部分偏差方法的超常准度。这些结果表明,其常规特性反映了基于环境管理小组方法的可靠度。

0
下载
关闭预览

相关内容

模式识别是一个成熟的、令人兴奋的、快速发展的领域,它支撑着计算机视觉、图像处理、文本和文档分析以及神经网络等相关领域的发展。它与机器学习非常相似,在生物识别、生物信息学、多媒体数据分析和最新的数据科学等新兴领域也有应用。模式识别(Pattern Recognition)杂志成立于大约50年前,当时该领域刚刚出现计算机科学的早期。在这期间,它已大大扩大。只要这些论文的背景得到了清晰的解释并以模式识别文献为基础,该杂志接受那些对模式识别理论、方法和在任何领域的应用做出原创贡献的论文。 官网地址:http://dblp.uni-trier.de/db/conf/par/
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年5月31日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
110+阅读 · 2020年2月5日
Stock Chart Pattern recognition with Deep Learning
Arxiv
6+阅读 · 2018年8月1日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年5月31日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员