Max-Cut is a fundamental problem that has been studied extensively in various settings. We design an algorithm for Euclidean Max-Cut, where the input is a set of points in $\mathbb{R}^d$, in the model of dynamic geometric streams, where the input $X\subseteq [\Delta]^d$ is presented as a sequence of point insertions and deletions. Previously, Frahling and Sohler [STOC 2005] designed a $(1+\epsilon)$-approximation algorithm for the low-dimensional regime, i.e., it uses space $\exp(d)$. To tackle this problem in the high-dimensional regime, which is of growing interest, one must improve the dependence on the dimension $d$, ideally to space complexity $\mathrm{poly}(\epsilon^{-1} d \log\Delta)$. Lammersen, Sidiropoulos, and Sohler [WADS 2009] proved that Euclidean Max-Cut admits dimension reduction with target dimension $d' = \mathrm{poly}(\epsilon^{-1})$. Combining this with the aforementioned algorithm that uses space $\exp(d')$, they obtain an algorithm whose overall space complexity is indeed polynomial in $d$, but unfortunately exponential in $\epsilon^{-1}$. We devise an alternative approach of \emph{data reduction}, based on importance sampling, and achieve space bound $\mathrm{poly}(\epsilon^{-1} d \log\Delta)$, which is exponentially better (in $\epsilon$) than the dimension-reduction approach. To implement this scheme in the streaming model, we employ a randomly-shifted quadtree to construct a tree embedding. While this is a well-known method, a key feature of our algorithm is that the embedding's distortion $O(d\log\Delta)$ affects only the space complexity, and the approximation ratio remains $1+\epsilon$.
翻译:流式欧几里得Max-Cut问题:维数与数据压缩
Max-Cut是一个在不同场景下被广泛研究的基本问题。我们设计了一个针对欧几里得Max-Cut问题的算法。输入为$\mathbb{R}^d$空间内的一组点,采用几何动态流的模型,即将输入$X\subseteq [\Delta]^d$作为点插入和删除的顺序序列呈现。之前,Frahling和Sohler[STOC 2005]设计了一种对于低维度的$(1+\epsilon)$逼近算法,即它使用的空间复杂度为$\exp(d)$。为了在当前备受关注的高维度问题中解决此问题,必须改进对于维度d的依赖,理想情况下的空间复杂度为$\mathrm{poly}(\epsilon^{-1} d \log\Delta)$。Lammersen、Sidiropoulos和Sohler[WADS 2009]证明了欧几里得Max-Cut问题是可降维的,目标维度为$d'=\mathrm{poly}(\epsilon^{-1})$。将此与上述算法结合起来,使用的空间复杂度确实是$d$的多项式,但不幸的是,$\epsilon$的指数级别增长。我们设计了一种基于重要性抽样的替代方法进行数据压缩,并实现了$\mathrm{poly}(\epsilon^{-1} d \log\Delta)$的空间界,这比降维方法要好得多。为了在流式模型中实现此方案,我们采用了一个随机平移的quadtree构建一个树嵌入。虽然这是一种众所周知的方法,但我们算法的一个关键特点是嵌入的扭曲率$O(d\log\Delta)$只会影响空间复杂度,逼近比率仍然是$1+\epsilon$。