The abductive natural language inference task ($\alpha$NLI) is proposed to infer the most plausible explanation between the cause and the event. In the $\alpha$NLI task, two observations are given, and the most plausible hypothesis is asked to pick out from the candidates. Existing methods model the relation between each candidate hypothesis separately and penalize the inference network uniformly. In this paper, we argue that it is unnecessary to distinguish the reasoning abilities among correct hypotheses; and similarly, all wrong hypotheses contribute the same when explaining the reasons of the observations. Therefore, we propose to group instead of ranking the hypotheses and design a structural loss called ``joint softmax focal loss'' in this paper. Based on the observation that the hypotheses are generally semantically related, we have designed a novel interactive language model aiming at exploiting the rich interaction among competing hypotheses. We name this new model for $\alpha$NLI: Interactive Model with Structural Loss (IMSL). The experimental results show that our IMSL has achieved the highest performance on the RoBERTa-large pretrained model, with ACC and AUC results increased by about 1\% and 5\% respectively.


翻译:绑架性自然语言推断任务( ALpha$NLI) 旨在推断原因与事件之间最可信的解释。 在 $\ alpha$NLI 任务中, 给出了两种意见, 并请求从候选人中挑选最可信的假设。 现有方法分别为每个候选人假设之间的关系建模, 并统一惩罚推论网络。 在本文中, 我们提出, 没有必要区分正确的假设之间的推理能力; 同样, 在解释观察理由时, 所有错误的假设都会做出同样的贡献 。 因此, 我们提议对假设进行分组, 并设计一个结构性损失, 称为“ 联合软式软式焦点损失 ” 。 基于这些假设通常具有语义相关性的观察, 我们设计了一个新型互动语言模型, 目的是利用相互竞争的假设之间的丰富互动。 我们为 $\ alpha$ NLI: 与结构损失互动模型( IMSL ) 命名这个新模型。 实验结果显示, 我们IMSL 在RoBERTA大前型模型上取得了最高性表现, ACC & 5 和AUCL 分别提高了结果。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员