The 3D LiDAR place recognition aims to estimate a coarse localization in a previously seen environment based on a single scan from a rotating 3D LiDAR sensor. The existing solutions to this problem include hand-crafted point cloud descriptors (e.g., ScanContext, M2DP, LiDAR IRIS) and deep learning-based solutions (e.g., PointNetVLAD, PCAN, LPDNet, DAGC, MinkLoc3D), which are often only evaluated on accumulated 2D scans from the Oxford RobotCar dataset. We introduce MinkLoc3D-SI, a sparse convolution-based solution that utilizes spherical coordinates of 3D points and processes the intensity of 3D LiDAR measurements, improving the performance when a single 3D LiDAR scan is used. Our method integrates the improvements typical for hand-crafted descriptors (like ScanContext) with the most efficient 3D sparse convolutions (MinkLoc3D). Our experiments show improved results on single scans from 3D LiDARs (USyd Campus dataset) and great generalization ability (KITTI dataset). Using intensity information on accumulated 2D scans (RobotCar Intensity dataset) improves the performance, even though spherical representation doesn't produce a noticeable improvement. As a result, MinkLoc3D-SI is suited for single scans obtained from a 3D LiDAR, making it applicable in autonomous vehicles.
翻译:3D LiDAR 位置识别( 3D LiDAR) 旨在根据旋转 3D LiDAR 传感器的单次扫描来估计先前所见环境中的粗糙本地化。 这一问题的现有解决方案包括手制点云描述仪( 例如, ScanContext, M2DP, LiDAR IRIS) 和深层次的学习解决方案( 例如, PointNetVLAD, PCAN, LPDNet, DAGC, MinkLoc3D ), 这些解决方案通常仅在从牛津机器人汽车数据集中累积的 2D 扫描仪上进行评估。 我们的实验显示, 3D LOCO3 的单次扫描仪( 应用的最小Loc3D- SI ) 、 利用 3DLDAR 测量仪的球坐标和强度处理 3D RD 测量仪的深度, 当使用单项 3DAR 扫描仪时, 我们的方法将手制解的标的典型改进方法与最高效的 3D Rent convoclations 3L3D das a lax a lax lax a lax a lax lax a lax a lax a lax a lax a lax decs a lax lax a lax a lax a lax a lade ds a lax a lax decs a lacial recs a latude ds a latutionals a lade ds a ladals a lad ds a las a lads a lads decreals a lads deceals a lads a lads a lads a lads a lads lactions a lactions dections a lactions a lactions a lactions a lactions a ladals a ladals a ladals a ladals a ladals a ladals a laction a las a las a mas a