We deal with a long-standing problem about how to design an energy-stable numerical scheme for solving the motion of a closed curve under {\sl anisotropic surface diffusion} with a general anisotropic surface energy $\gamma(\boldsymbol{n})$ in two dimensions, where $\boldsymbol{n}$ is the outward unit normal vector. By introducing a novel symmetric positive definite surface energy matrix $Z_k(\boldsymbol{n})$ depending on the Cahn-Hoffman $\boldsymbol{\xi}$-vector and a stabilizing function $k(\boldsymbol{n})$, we first reformulate the anisotropic surface diffusion into a conservative form and then derive a new symmetrized variational formulation for the anisotropic surface diffusion with both weakly and strongly anisotropic surface energies. A semi-discretization in space for the symmetrized variational formulation is proposed and its area (or mass) conservation and energy dissipation are proved. The semi-discretization is then discretized in time by either an implicit structural-preserving scheme (SP-PFEM) which preserves the area in the discretized level or a semi-implicit energy-stable method (ES-PFEM) which needs only solve a linear system at each time step. Under a relatively simple and mild condition on $\gamma(\boldsymbol{n})$, we show that both SP-PFEM and ES-PFEM are energy dissipative and thus are unconditionally energy-stable for almost all anisotropic surface energies $\gamma(\boldsymbol{n})$ arising in practical applications. Specifically, for several commonly-used anisotropic surface energies, we construct $Z_k(\boldsymbol{n})$ explicitly. Finally, extensive numerical results are reported to demonstrate the efficiency and accuracy as well as the unconditional energy-stability of the proposed symmetrized parametric finite element method.
翻译:我们处理的一个长期问题是如何在两个维度中设计一个能耗可变数字方案, 解决在=sl anisotrotology 表面扩散下封闭曲线的动作 $\ gamma (\ boldsymbol{n}) 在两个维度中, $\ boldsymbol{ n} 美元是外向单位正常矢量。 引入一个新的对称正数表面能量基质基质 $k (\ boldsymol{n}), 取决于 Cahn- Hoffman $\ boldsymol_ sium_ 美元表面扩散 $\ byxxy_ 美元 美元表面扩散) 。 我们首先将动脉冲表面能量基质扩散重新配置成保守的形式, 然后产生一种新的可调和可燃性表面表面能量基质的表面能量基质变异度 。 空间的可分解度( 流化变性能量基体的节能法 ) 正在演示一个内部的节能法化的节能法,, 和内部的节化的节化法 的节化法的节化法的节化的节化的节化法的节化法的节化( 的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化法, 的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节化的节