The new NASA Astrophysics Data System (ADS) is designed with a serviceoriented architecture (SOA) that consists of multiple customized Apache Solr search engine instances plus a collection of microservices, containerized using Docker, and deployed in Amazon Web Services (AWS). For complex systems, like the ADS, this loosely coupled architecture can lead to a more scalable, reliable and resilient system if some fundamental questions are addressed. After having experimented with different AWS environments and deployment methods, we decided in December 2017 to go with Kubernetes as our container orchestration. Defining the best strategy to properly setup Kubernetes has shown to be challenging: automatic scaling services and load balancing traffic can lead to errors whose origin is difficult to identify, monitoring and logging the activity that happens across multiple layers for a single request needs to be carefully addressed, and the best workflow for a Continuous Integration and Delivery (CI/CD) system is not self-evident. We present here how we tackle these challenges and our plans for the future.


翻译:新的美国航天局天体物理学数据系统(ADS)的设计是一个以服务为导向的架构(SOA ), 由多个定制的阿帕奇索尔搜索引擎(Apache Solr Solr) 搜索引擎(SOA), 以及一系列微型服务、 使用多装箱的集装箱, 并部署在亚马逊网络服务系统(AWS ) 组成。 对于像ADS这样的复杂系统来说, 如果解决一些基本问题, 这种松散搭的架构可以导致一个更可扩展、更可靠、更具有复原力的系统。 在实验了不同的AWS环境和部署方法之后, 我们于2017年12月决定用Kubernetes作为我们的集装箱管弦。 定义正确建立Kubernetes 的最佳战略已经证明具有挑战性: 自动缩放服务和负载平衡交通可能带来错误, 其起源是难以识别、 监测和记录跨多层活动, 需要仔细处理, 而持续整合和交付系统的最佳工作流程并非不言自明。 我们在这里介绍如何应对这些挑战和我们的未来计划。

0
下载
关闭预览

相关内容

Apache Solr 是一个开源的搜索服务器。Solr 使用 Java 语言开发,主要基于 HTTP 和 Apache Lucene 实现。Apache Solr 中存储的资源是以 Document 为对象进行存储的。每个文档由一系列的 Field 构成,每个 Field 表示资源的一个属性。
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关VIP内容
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员