The task of entity alignment between knowledge graphs (KGs) aims to identify every pair of entities from two different KGs that represent the same entity. Many machine learning-based methods have been proposed for this task. However, to our best knowledge, existing methods all require manually crafted seed alignments, which are expensive to obtain. In this paper, we propose the first fully automatic alignment method named TransAlign, which does not require any manually crafted seed alignments. Specifically, for predicate embeddings, TransAlign constructs a predicate-proximity-graph to automatically capture the similarity between predicates across two KGs by learning the attention of entity types. For entity embeddings, TransAlign first computes the entity embeddings of each KG independently using TransE, and then shifts the two KGs' entity embeddings into the same vector space by computing the similarity between entities based on their attributes. Thus, both predicate alignment and entity alignment can be done without manually crafted seed alignments. TransAlign is not only fully automatic, but also highly effective. Experiments using real-world KGs show that TransAlign improves the accuracy of entity alignment significantly compared to state-of-the-art methods.
翻译:知识图形( KGs) 之间的实体对齐任务旨在识别代表同一实体的两个不同的 KG 的每对实体。 已经为此任务提出了许多基于机器学习的方法。 但是, 据我们所知, 现有的方法都需要手工制作的种子对齐, 费用昂贵。 在本文件中, 我们提议了第一个名为 TransAlign 的完全自动对齐方法, 不需要手工手工制作的种子对齐。 具体来说, 用于前嵌嵌嵌入, TransAlign 构建了一种上游- 近似图, 以通过学习实体类型的关注来自动捕捉两个KG 的上游之间的相似性。 对于实体嵌入, TransAlign 首先对每个KG 的实体进行人工配置, 然后将两个 KGs 的实体嵌入同一矢量空间, 根据实体的属性计算相似性。 因此, 上游对实体的对齐度和实体对齐可以不手工制作的种子对齐。 Transalign Align 不仅是完全自动的, 而且是高度有效的。 使用现实世界 KGs 的对准性进行实验, 显示 Transalign- 的精确性改进了 TransAlgs。