Neural Networks (NN), although successfully applied to several Artificial Intelligence tasks, are often unnecessarily over-parametrized. In fog/edge computing, this might make their training prohibitive on resource-constrained devices, contrasting with the current trend of decentralising intelligence from remote data-centres to local constrained devices. Therefore, we investigate the problem of training effective NN models on constrained devices having a fixed, potentially small, memory budget. We target techniques that are both resource-efficient and performance effective while enabling significant network compression. Our technique, called Dynamic Hard Pruning (DynHP), incrementally prunes the network during training, identifying neurons that marginally contribute to the model accuracy. DynHP enables a tunable size reduction of the final neural network and reduces the NN memory occupancy during training. Freed memory is reused by a \emph{dynamic batch sizing} approach to counterbalance the accuracy degradation caused by the hard pruning strategy, improving its convergence and effectiveness. We assess the performance of DynHP through reproducible experiments on two public datasets, comparing them against reference competitors. Results show that DynHP compresses a NN up to $10$ times without significant performance drops (up to $5\%$ relative error w.r.t. competitors), reducing up to $80\%$ the training memory occupancy.
翻译:神经网络(NN)虽然成功地应用于了几项人工智能任务,但往往被不必要地过度平衡。在迷雾/边缘计算中,这可能使他们的培训对资源限制装置造成无法使用的培训,这与目前将情报从远程数据中心分散到当地受限制装置的趋势形成对照。因此,我们调查了对限制装置的有效NN模型的培训问题,这些模型具有固定的、潜在的小记忆预算。我们针对的是资源效率和性能都有效,同时能够促成重要的网络压缩的技术。我们的技术,称为动态硬普鲁宁(DynHP),在培训期间逐步利用网络,查明对模型准确性稍有贡献的神经元。DynHP使得最终神经元网络的缩略缩规模减少,并在培训期间减少NNN的记忆占用量。自由记忆被一种固定的、潜在的小批量的存储量的方法再利用,以抵消硬运行战略造成的准确性退化,同时提高它的趋同性和有效性。我们评估DynHP的绩效,方法是在两个公共数据集上进行可复制的实验,将其与参考竞争者进行比较。结果显示,将它们比起来它们比起来比起来,最后神经网络的神经值为10美元。结果显示D_RPAS的成绩比值为10美元。