Contemporary deep learning multi-scale deblurring models suffer from many issues: 1) They perform poorly on non-uniformly blurred images/videos; 2) Simply increasing the model depth with finer-scale levels cannot improve deblurring; 3) Individual RGB frames contain a limited motion information for deblurring; 4) Previous models have a limited robustness to spatial transformations and noise. Below, we extend the DMPHN model by several mechanisms to address the above issues: I) We present a novel self-supervised event-guided deep hierarchical Multi-patch Network (MPN) to deal with blurry images and videos via fine-to-coarse hierarchical localized representations; II) We propose a novel stacked pipeline, StackMPN, to improve the deblurring performance under the increased network depth; III) We propose an event-guided architecture to exploit motion cues contained in videos to tackle complex blur in videos; IV) We propose a novel self-supervised step to expose the model to random transformations (rotations, scale changes), and make it robust to Gaussian noises. Our MPN achieves the state of the art on the GoPro and VideoDeblur datasets with a 40x faster runtime compared to current multi-scale methods. With 30ms to process an image at 1280x720 resolution, it is the first real-time deep motion deblurring model for 720p images at 30fps. For StackMPN, we obtain significant improvements over 1.2dB on the GoPro dataset by increasing the network depth. Utilizing the event information and self-supervision further boost results to 33.83dB.
翻译:当代深层学习的多层次分流模型存在许多问题:(1) 在非统一的模糊图像/视频上,它们表现不力;(2) 仅仅以细度水平提高模型深度不能改进分流;(3) 个人 RGB 框架包含有限的分流信息以进行分流;(4) 以往模型对空间变换和噪音的强度有限。 下面,我们通过若干机制扩展DMPHN 模型以解决上述问题:一) 我们展示了一个新颖的自我监督事件引导的低等级多级83分流改进网络(MPN),以通过微调到分层分层的图像显示模糊的图像和视频;(2) 我们提议了一个新型的堆叠式管道 StackMPN, 以提高网络深度的分流性能;(3) 我们提出一个事件引导架构,利用视频中包含的动导线,以解决复杂的视频模糊问题;四) 我们提出一个新的自我监督20分级模型步骤,让模型通过随机变换(ro调、规模变换),并使它在40级的重大局部表达器上更稳健的图像; 我们的30 PROMN-ROB 将快速的图像流到当前分辨率到12级的图解到现在的图解到图解到现在的图解到现在的图。