Let $V_n$ be a set of $n$ points in the plane and let $x \notin V_n$. An $x$-loop is a continuous closed curve not containing any point of $V_n$. We say that two $x$-loops are non-homotopic if they cannot be transformed continuously into each other without passing through a point of $V_n$. For $n=2$, we give an upper bound $e^{O\left(\sqrt{k}\right)}$ on the maximum size of a family of pairwise non-homotopic $x$-loops such that every loop has fewer than $k$ self-intersections and any two loops have fewer than $k$ intersections. The exponent $O\big(\sqrt{k}\big)$ is asymptotically tight. The previous upper bound bound $2^{(2k)^4}$ was proved by Pach, Tardos, and T\'oth [Graph Drawing 2020]. We prove the above result by proving the asymptotic upper bound $e^{O\left(\sqrt{k}\right)}$ for a similar problem when $x \in V_n$, and by proving a close relation between the two problems.
翻译:$_n美元 在平面上是一套美元点数, 在平面上是一套美元点数, 在每平面上是 $x_n美元。 $x$- loop 是一个连续封闭曲线, 不包含任何点数 V_ n美元。 我们说, 如果两块美元卢布不能在不经过 V_n美元点的情况下连续地转换成对方, 而不是通过 $V_ n_n美元, 美元是非平面的。 对于美元=2美元, 我们给双向非平面 $x$- loops 家庭的最大大小 $% O\ left (sqrt{k}) 美元。 由 Pach, Tardos 和 T\ operth [ Graph 绘图 $xx- bloops 美元] 来证明, 每一个环圈的自我界面小于 $k美元, 任何两圈的交叉点都少于 $k美元。 Expent $\ a train 之间的问题, 我们证明上面的结果是 $_ prettyx_ a trate latial lax a lax a group lax a prob subild