This paper reimagines some aspects of speech processing using speech encoders, specifically about extracting entities directly from speech, with no intermediate textual representation. In human-computer conversations, extracting entities such as names, postal addresses and email addresses from speech is a challenging task. In this paper, we study the impact of fine-tuning pre-trained speech encoders on extracting spoken entities in human-readable form directly from speech without the need for text transcription. We illustrate that such a direct approach optimizes the encoder to transcribe only the entity relevant portions of speech, ignoring the superfluous portions such as carrier phrases and spellings of entities. In the context of dialogs from an enterprise virtual agent, we demonstrate that the 1-step approach outperforms the typical 2-step cascade of first generating lexical transcriptions followed by text-based entity extraction for identifying spoken entities.
翻译:本文重新构想了语音处理中的一些方面,特别是直接从语音中提取实体的方法,而不需要任何中间文本表示。在人机对话中,从语音中提取姓名、邮政地址和电子邮件地址等实体是一个具有挑战性的任务。在本文中,我们研究了微调预训练语音编码器对从语音中直接提取可读实体的影响,而不需要文本转录。我们说明了这种直接方法优化了编码器以只转录与实体相关的语音部分,忽略多余的部分,如载体短语和实体的拼写。在企业虚拟代理的对话上下文中,我们证明了这种一步法优于典型的两步级联,即首先生成词汇转录,然后进行基于文本的实体提取来识别口语实体。