Video compression benefits from advanced chroma intra prediction methods, such as the Cross-Component Linear Model (CCLM) which uses linear models to approximate the relationship between the luma and chroma components. Recently it has been proven that advanced cross-component prediction methods based on Neural Networks (NN) can bring additional coding gains. In this paper, spatial information refinement is proposed for improving NN-based chroma intra prediction. Specifically, the performance of chroma intra prediction can be improved by refined down-sampling or by incorporating location information. Experimental results show that the two proposed methods obtain 0.31%, 2.64%, 2.02% and 0.33%, 3.00%, 2.12% BD-rate reduction on Y, Cb and Cr components, respectively, under All-Intra configuration, when implemented in Versatile Video Coding (H.266/VVC) test model. Index Terms-Chroma intra prediction, convolutional neural networks, spatial information refinement.
翻译:高级红外线性线性模型(CCLM)等先进红外线性线性模型(CCLM)等先进红外线性预测方法(CCLM)的图像压缩效果,该模型使用线性模型来接近红外线和红外线成分之间的关系。最近,事实证明,基于神经网络(NN)的高级跨构件预测方法可以带来额外的编码收益。在本文中,为了改进基于NNN的红外线性预测,建议改进空间信息。具体来说,通过改进下标或纳入定位信息,可以改进红内红色预测的性能。实验结果表明,两种拟议方法在全内部配置下分别获得0.31%、2.64%、2.02%和0.33%、3.00 %、2.12%的BD-率,在Versatile视频编码(H.266/VC)试验模型中实施时,在全内部配置下分别获得Y、Cb和C部分(H.266/VC)的B-比例削减2.12%。指数内红外线性网络、空间信息改进。