Video compression benefits from advanced chroma intra prediction methods, such as the Cross-Component Linear Model (CCLM) which uses linear models to approximate the relationship between the luma and chroma components. Recently it has been proven that advanced cross-component prediction methods based on Neural Networks (NN) can bring additional coding gains. In this paper, spatial information refinement is proposed for improving NN-based chroma intra prediction. Specifically, the performance of chroma intra prediction can be improved by refined down-sampling or by incorporating location information. Experimental results show that the two proposed methods obtain 0.31%, 2.64%, 2.02% and 0.33%, 3.00%, 2.12% BD-rate reduction on Y, Cb and Cr components, respectively, under All-Intra configuration, when implemented in Versatile Video Coding (H.266/VVC) test model. Index Terms-Chroma intra prediction, convolutional neural networks, spatial information refinement.


翻译:高级红外线性线性模型(CCLM)等先进红外线性线性模型(CCLM)等先进红外线性预测方法(CCLM)的图像压缩效果,该模型使用线性模型来接近红外线和红外线成分之间的关系。最近,事实证明,基于神经网络(NN)的高级跨构件预测方法可以带来额外的编码收益。在本文中,为了改进基于NNN的红外线性预测,建议改进空间信息。具体来说,通过改进下标或纳入定位信息,可以改进红内红色预测的性能。实验结果表明,两种拟议方法在全内部配置下分别获得0.31%、2.64%、2.02%和0.33%、3.00 %、2.12%的BD-率,在Versatile视频编码(H.266/VC)试验模型中实施时,在全内部配置下分别获得Y、Cb和C部分(H.266/VC)的B-比例削减2.12%。指数内红外线性网络、空间信息改进。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
专知会员服务
60+阅读 · 2020年3月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
5+阅读 · 2021年9月30日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员