System identification poses a significant bottleneck to characterizing and controlling complex systems. This challenge is greatest when both the system states and parameters are not directly accessible leading to a dual-estimation problem. Current approaches to such problems are limited in their ability to scale with many-parameter systems as often occurs in networks. In the current work, we present a new, computationally efficient approach to treat large dual-estimation problems. Our approach consists of directly integrating pseudo-optimal state estimation (the Extended Kalman Filter) into a dual-optimization objective, leaving a differentiable cost/error function of only in terms of the unknown system parameters which we solve using numerical gradient/Hessian methods. Intuitively, our approach consists of solving for the parameters that generate the most accurate state estimator (Extended Kalman Filter). We demonstrate that our approach is at least as accurate in state and parameter estimation as joint Kalman Filters (Extended/Unscented), despite lower complexity. We demonstrate the utility of our approach by inverting anatomically-detailed individualized brain models from human magnetoencephalography (MEG) data.
翻译:系统识别是复杂系统特征化和控制的重大瓶颈。 当系统状态和参数无法直接进入,无法直接导致双重估计问题时,这个挑战最大。 这些问题的当前处理方法在与网络中经常出现的多参数系统相比的规模上能力有限。 在目前的工作中,我们提出了一个新的、计算效率高的方法来处理大型双重估计问题。 我们的方法包括将伪最佳国家估计(扩展卡尔曼过滤器)直接纳入双重优化目标,留下一个不同的成本/错误功能,仅以我们用数字梯度/赫斯仪方法解决的未知系统参数为单位。 直观地说,我们的方法是解决产生最准确的州估计器(Exterend Kalman过滤器)的参数。 我们证明,我们的方法在州和参数估计中至少是准确的,尽管比较复杂程度较低。 我们展示了我们的方法的实用性,就是从人类磁性数据中反向解剖析个体化脑模型(MEG)。