Automatic text summarization extracts important information from texts and presents the information in the form of a summary. Abstractive summarization approaches progressed significantly by switching to deep neural networks, but results are not yet satisfactory, especially for languages where large training sets do not exist. In several natural language processing tasks, a cross-lingual model transfer is successfully applied in less-resource languages. For summarization, the cross-lingual model transfer was not attempted due to a non-reusable decoder side of neural models that cannot correct target language generation. In our work, we use a pre-trained English summarization model based on deep neural networks and sequence-to-sequence architecture to summarize Slovene news articles. We address the problem of inadequate decoder by using an additional language model for the evaluation of the generated text in target language. We test several cross-lingual summarization models with different amounts of target data for fine-tuning. We assess the models with automatic evaluation measures and conduct a small-scale human evaluation. Automatic evaluation shows that the summaries of our best cross-lingual model are useful and of quality similar to the model trained only in the target language. Human evaluation shows that our best model generates summaries with high accuracy and acceptable readability. However, similar to other abstractive models, our models are not perfect and may occasionally produce misleading or absurd content.


翻译:自动文本总和从文本中摘取重要信息,并以摘要形式提供信息。 抽象摘要方法通过转换到深神经网络而取得显著进展,但结果尚不令人满意,特别是对于没有大型培训成套材料的语言而言。 在一些自然语言处理任务中,以资源较少的语言成功地应用了跨语言模式转让; 在概括方面,由于神经模型无法再使用解码器,因此没有尝试跨语言模式转让,无法纠正目标语言生成。 在我们的工作中,我们使用基于深神经网络和顺序至顺序结构的经过培训的英语总和模型来总结斯洛文尼亚语新闻文章。 我们通过使用额外的语言模型来评价目标语言中生成的文本,解决了解码器不完善的问题。 我们测试了数种跨语言组合模型,目标数据量不同,以微调为目的。 我们用自动评价措施评估模型,并进行小规模的人文评估。 自动评估表明,我们的最佳跨语言模型摘要有用,质量与所培训的模型相似,质量与斯洛文尼亚语类新闻文章的模型类似。 人类评估显示,我们最精确的模型可能不易理解。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
90+阅读 · 2021年6月29日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
【ICML2020】文本摘要生成模型PEGASUS
专知会员服务
35+阅读 · 2020年8月23日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Topic-Guided Abstractive Multi-Document Summarization
Arxiv
0+阅读 · 2021年10月21日
Arxiv
5+阅读 · 2019年11月22日
Arxiv
4+阅读 · 2019年9月26日
Arxiv
21+阅读 · 2019年3月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员