A graph $G$ is a $k$-leaf power if there exists a tree $T$ whose leaf set is $V(G)$, and such that $uv \in E(G)$ if and only if the distance between $u$ and $v$ in $T$ is at most $k$. The graph classes of $k$-leaf powers have several applications in computational biology, but recognizing them has remained a challenging algorithmic problem for the past two decades. The best known result is that $6$-leaf powers can be recognized in polynomial time. In this paper, we present an algorithm that decides whether a graph $G$ is a $k$-leaf power in time $O(n^{f(k)})$ for some function $f$ that depends only on $k$ (but has the growth rate of a power tower function). Our techniques are based on the fact that either a $k$-leaf power has a corresponding tree of low maximum degree, in which case finding it is easy, or every corresponding tree has large maximum degree. In the latter case, large degree vertices in the tree imply that $G$ has redundant substructures which can be pruned from the graph. In addition to solving a longstanding open problem, we hope that the structural results presented in this work can lead to further results on $k$-leaf powers.
翻译:图表 $G$ 如果树叶的叶子为 美元( G) 美元, 并且只有美元与美元( 美元) 美元之间的距离为 美元, 美元( G) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元( 美元) leaf) 在计算生物学中有若干应用, 但他们认识到, 过去二十年来, 美元( 美元( 美元) leaf) 权力仍然是个具有挑战性的算法问题。 最著名的结果是, 6 美元( 美元) leaf) 的电量在多元时间里可以被确认, 6 6 美元( 或每棵对应的树都有 最大程度( ) 。 在后一 美元( 美元( 美元) ) 。 在后一例中,, 长期( ) 等值中, 等值中, 等值 等值 等值 等值 等值( ) 等值( ) ) 等值( ), 等值 ( ) 等值( ) ) 等值 等值( 等值( ) 等值( )