Cross-lingual sponsored search is crucial for global advertising platforms, where users from different language backgrounds interact with multilingual ads. Traditional machine translation methods often fail to capture query-specific contextual cues, leading to semantic ambiguities that negatively impact click-through rates (CTR) and conversion rates (CVR). To address this challenge, we propose AdGraphTrans, a novel dual-encoder framework enhanced with graph neural networks (GNNs) for context-aware query translation in advertising. Specifically, user queries and ad contents are independently encoded using multilingual Transformer-based encoders (mBERT/XLM-R), and contextual relations-such as co-clicked ads, user search sessions, and query-ad co-occurrence-are modeled as a heterogeneous graph. A graph attention network (GAT) is then applied to refine embeddings by leveraging semantic and behavioral context. These embeddings are aligned via contrastive learning to reduce translation ambiguity. Experiments conducted on a cross-lingual sponsored search dataset collected from Google Ads and Amazon Ads (EN-ZH, EN-ES, EN-FR pairs) demonstrate that AdGraphTrans significantly improves query translation quality, achieving a BLEU score of 38.9 and semantic similarity (cosine score) of 0.83, outperforming strong baselines such as mBERT and M2M-100. Moreover, in downstream ad retrieval tasks, AdGraphTrans yields +4.67% CTR and +1.72% CVR improvements over baseline methods. These results confirm that incorporating graph-based contextual signals with dual-encoder translation provides a robust solution for enhancing cross-lingual sponsored search in advertising platforms.
翻译:跨语言赞助搜索对于全球广告平台至关重要,不同语言背景的用户在此与多语言广告进行交互。传统的机器翻译方法往往难以捕捉查询特定的上下文线索,导致语义模糊,进而对点击率(CTR)和转化率(CVR)产生负面影响。为应对这一挑战,我们提出了AdGraphTrans,一种新颖的双编码器框架,通过图神经网络(GNNs)增强,用于广告中的上下文感知查询翻译。具体而言,用户查询和广告内容分别使用基于多语言Transformer的编码器(mBERT/XLM-R)独立编码,并将上下文关系——如共同点击的广告、用户搜索会话以及查询-广告共现——建模为异构图。随后应用图注意力网络(GAT),通过利用语义和行为上下文来优化嵌入表示。这些嵌入通过对比学习进行对齐,以减少翻译歧义。在从Google Ads和Amazon Ads收集的跨语言赞助搜索数据集(EN-ZH、EN-ES、EN-FR语言对)上进行的实验表明,AdGraphTrans显著提升了查询翻译质量,实现了38.9的BLEU分数和0.83的语义相似度(余弦分数),优于mBERT和M2M-100等强基线模型。此外,在下游广告检索任务中,AdGraphTrans相比基线方法带来了+4.67%的CTR和+1.72%的CVR提升。这些结果证实,将基于图的上下文信号与双编码器翻译相结合,为增强广告平台中的跨语言赞助搜索提供了稳健的解决方案。