Group testing can save testing resources in the context of the ongoing COVID-19 pandemic. In group testing, we are given $n$ samples, one per individual, and arrange them into $m < n$ pooled samples, where each pool is obtained by mixing a subset of the $n$ individual samples. Infected individuals are then identified using a group testing algorithm. In this paper, we use side information (SI) collected from contact tracing (CT) within non-adaptive/single-stage group testing algorithms. We generate data by incorporating CT SI and characteristics of disease spread between individuals. These data are fed into two signal and measurement models for group testing, where numerical results show that our algorithms provide improved sensitivity and specificity. While Nikolopoulos et al. utilized family structure to improve non-adaptive group testing, ours is the first work to explore and demonstrate how CT SI can further improve group testing performance.


翻译:在进行中的COVID-19大流行情况下,集体测试可以节省测试资源。在集体测试中,我们得到一美元样本,每个个人一份,并将他们安排为一美元 < n$的集合样本,其中每个集合样本是通过混合一组美元个人样本获得的。然后利用一个群体测试算法确定感染者的身份。在本文中,我们使用非适应/单一阶段群体测试算法中从接触跟踪中收集的侧面信息。我们通过纳入CT SI和个人之间疾病传播特征生成数据。这些数据被输入两个用于群体测试的信号和测量模型,其中数字结果显示我们的算法提供了更好的敏感性和特性。虽然Nikolopoul 等人利用家庭结构改进非适应群体测试,但我们是第一个探索和展示CT SI 如何进一步改进群体测试绩效的工作。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
0+阅读 · 2021年1月18日
Arxiv
0+阅读 · 2021年1月15日
Random and quasi-random designs in group testing
Arxiv
0+阅读 · 2021年1月15日
Group Testing with a Graph Infection Spread Model
Arxiv
0+阅读 · 2021年1月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员