Recent video diffusion models show immense potential for spatial intelligence tasks due to their rich world priors, but this is undermined by limited controllability, poor spatial-temporal consistency, and entangled scene-camera dynamics. Existing solutions, such as model fine-tuning and warping-based repainting, struggle with scalability, generalization, and robustness against artifacts. To address this, we propose WorldForge, a training-free, inference-time framework composed of three tightly coupled modules. 1) Intra-Step Recursive Refinement injects fine-grained trajectory guidance at denoising steps through a recursive correction loop, ensuring motion remains aligned with the target path. 2) Flow-Gated Latent Fusion leverages optical flow similarity to decouple motion from appearance in the latent space and selectively inject trajectory guidance into motion-related channels. 3) Dual-Path Self-Corrective Guidance compares guided and unguided denoising paths to adaptively correct trajectory drift caused by noisy or misaligned structural signals. Together, these components inject fine-grained, trajectory-aligned guidance without training, achieving both accurate motion control and photorealistic content generation. Our framework is plug-and-play and model-agnostic, enabling broad applicability across various 3D/4D tasks. Extensive experiments demonstrate that our method achieves state-of-the-art performance in trajectory adherence, geometric consistency, and perceptual quality, outperforming both training-intensive and inference-only baselines.
翻译:暂无翻译