Specifying reward functions for robots that operate in environments without a natural reward signal can be challenging, and incorrectly specified rewards can incentivise degenerate or dangerous behavior. A promising alternative to manually specifying reward functions is to enable robots to infer them from human feedback, like demonstrations or corrections. To interpret this feedback, robots treat as approximately optimal a choice the person makes from a choice set, like the set of possible trajectories they could have demonstrated or possible corrections they could have made. In this work, we introduce the idea that the choice set itself might be difficult to specify, and analyze choice set misspecification: what happens as the robot makes incorrect assumptions about the set of choices from which the human selects their feedback. We propose a classification of different kinds of choice set misspecification, and show that these different classes lead to meaningful differences in the inferred reward and resulting performance. While we would normally expect misspecification to hurt, we find that certain kinds of misspecification are neither helpful nor harmful (in expectation). However, in other situations, misspecification can be extremely harmful, leading the robot to believe the opposite of what it should believe. We hope our results will allow for better prediction and response to the effects of misspecification in real-world reward inference.


翻译:指定在没有自然奖赏信号的环境中运作的机器人的奖赏功能可能具有挑战性,而错误指定的奖赏可能会激励堕落或危险的行为。人工指定奖赏功能的一个有希望的替代办法是让机器人能够从人类的反馈中推断出这些奖赏,例如演示或校正。为了解释这种反馈,机器人将一个人从一组选择中作出的选择视为近乎最佳的选择,例如他们本可以展示的一套可能的轨迹或他们可能作出的可能纠正。在这项工作中,我们提出这样一种想法,即选择集本身可能难以具体指定,并分析选择的定点错误:当机器人对一组选择作出错误的假设,而人类从中选择他们的反馈时会发生什么情况。我们建议对不同种类的选择进行分类,并表明这些不同的类别会导致推断奖励和导致业绩的有意义的差异。我们通常会期望有伤害性,但我们发现某些种类的定点既不有用,也有害(期望 ) 。然而, 在其他情况下,错误的定点可能极为有害,导致机器人相信它所应该相信的反面的精确性。 我们希望,我们的预测结果将有利于世界的预测和结果。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年11月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
0+阅读 · 2021年3月12日
Arxiv
0+阅读 · 2021年3月11日
Arxiv
0+阅读 · 2021年3月11日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
3+阅读 · 2018年10月11日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
4+阅读 · 2019年11月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员