Many recent studies have shown that for models trained on datasets for natural language inference (NLI), it is possible to make correct predictions by merely looking at the hypothesis while completely ignoring the premise. In this work, we manage to derive adversarial examples in terms of the hypothesis-only bias and explore eligible ways to mitigate such bias. Specifically, we extract various phrases from the hypotheses (artificial patterns) in the training sets, and show that they have been strong indicators to the specific labels. We then figure out `hard' and `easy' instances from the original test sets whose labels are opposite to or consistent with those indications. We also set up baselines including both pretrained models (BERT, RoBERTa, XLNet) and competitive non-pretrained models (InferSent, DAM, ESIM). Apart from the benchmark and baselines, we also investigate two debiasing approaches which exploit the artificial pattern modeling to mitigate such hypothesis-only bias: down-sampling and adversarial training. We believe those methods can be treated as competitive baselines in NLI debiasing tasks.


翻译:最近的许多研究显示,对于在自然语言推断数据集方面受过培训的模型,仅看假设即可作出正确的预测,而完全无视前提。在这项工作中,我们设法从仅假设的偏差中得出对抗性例子,并探索减轻这种偏差的合格方法。具体地说,我们从训练成套单元的假设(人工模式)中提取了各种短语,并表明它们是具体标签的有力指标。然后,我们从最初的测试组中找出“硬性”和“容易”的例子,其标签与这些迹象相反或一致。我们还建立了基线,包括预先训练的模型(BERT、ROBERTA、XLNet)和竞争性的非训练型模型(InferSent、DAM、ESIM),除了基准和基线外,我们还调查了两种偏差性方法,这些方法利用人为模式模型模型来减轻这种假设性的偏差:降样和对抗性训练。我们认为,这些方法可以作为NLID的竞争性基线处理。

0
下载
关闭预览

相关内容

MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
6+阅读 · 2019年3月19日
Arxiv
6+阅读 · 2018年11月1日
VIP会员
相关VIP内容
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员