Membership inference attack aims to identify whether a data sample was used to train a machine learning model or not. It can raise severe privacy risks as the membership can reveal an individual's sensitive information. For example, identifying an individual's participation in a hospital's health analytics training set reveals that this individual was once a patient in that hospital. Membership inference attacks have been shown to be effective on various machine learning models, such as classification models, generative models, and sequence-to-sequence models. Meanwhile, many methods are proposed to defend such a privacy attack. Although membership inference attack is an emerging and rapidly growing research area, there is no comprehensive survey on this topic yet. In this paper, we bridge this important gap in membership inference attack literature. We present the first comprehensive survey of membership inference attacks. We summarize and categorize existing membership inference attacks and defenses and explicitly present how to implement attacks in various settings. Besides, we discuss why membership inference attacks work and summarize the benchmark datasets to facilitate comparison and ensure fairness of future work. Finally, we propose several possible directions for future research and possible applications relying on reviewed works.


翻译:身份推断攻击旨在确定数据样本是否被用于培训机器学习模型; 它可以带来严重的隐私风险,因为成员可以披露个人敏感信息; 例如,确定个人参与医院健康分析培训的一组情况表明,此人曾经是该医院的病人; 成员推断攻击已证明对各种机器学习模式,例如分类模型、基因模型和顺序顺序模型有效; 同时,提出了许多方法来保护这种隐私攻击。 虽然成员推断攻击是一个新兴和迅速增长的研究领域,但尚未对这一主题进行全面调查。 在本文中,我们弥合了在成员推断攻击文献方面的这一重要差距。 我们首次对成员推断攻击进行了全面调查。 我们总结和分类了现有的成员推断攻击和防御,并明确介绍了在不同环境中实施攻击的方法。 此外,我们讨论了成员资格推断攻击工作的原因,并总结了基准数据集,以便利比较并确保未来工作的公正性。最后,我们提出了未来研究的若干可能的方向,并可能依靠已审查的工程的应用。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
14+阅读 · 2020年10月26日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
110+阅读 · 2020年2月5日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
相关论文
Arxiv
32+阅读 · 2021年3月8日
Arxiv
14+阅读 · 2020年10月26日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
110+阅读 · 2020年2月5日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
53+阅读 · 2018年12月11日
Top
微信扫码咨询专知VIP会员