Bayes factors are an increasingly popular tool for indexing evidence from experiments. For two competing population models, the Bayes factor reflects the relative likelihood of observing some data under one model compared to the other. In general, computing a Bayes factor is difficult, because computing the marginal likelihood of each model requires integrating the product of the likelihood and a prior distribution on the population parameter(s). In this paper, we develop a new analytic formula for computing Bayes factors directly from minimal summary statistics in repeated-measures designs. This work is an improvement on previous methods for computing Bayes factors from summary statistics (e.g., the BIC method), which produce Bayes factors that violate the Sellke upper bound of evidence for smaller sample sizes. The new approach taken in this paper extends requires knowing only the $F$-statistic and degrees of freedom, both of which are commonly reported in most empirical work. In addition to providing computational examples, we report a simulation study that benchmarks the new formula against other methods for computing Bayes factors in repeated-measures designs. Our new method provides an easy way for researchers to compute Bayes factors directly from a minimal set of summary statistics, allowing users to index the evidential value of their own data, as well as data reported in published studies.
翻译:对于两个相互竞争的人口模型,贝斯系数反映了在一个模型下观测某些数据相对比在另一个模型下观测某些数据的相对可能性。一般来说,计算一个贝斯系数是困难的,因为计算每个模型的边际可能性需要将可能性和先前人口参数分布的产物结合起来。在本文件中,我们直接从反复计量设计中最低限度的简要统计数据中为计算贝斯系数制定了一个新的分析公式。对于两个相互竞争的人口模型来说,贝斯系数反映了根据一个模型观察某些数据相对比较的可能性。一般来说,计算一个贝斯系数是困难的,因为计算每个模型的边际可能性要求将人口参数的产值和先前对人口参数的分布进行整合。在本文中,我们开发了一个新的分析公式,根据反复计量设计中计算拜斯系数的其他方法(例如BIC方法)进行了改进。我们的新方法为研究人员提供了一种容易的方法,可以直接从所公布的最低限度的简要统计数据中将贝斯因素作为基本数据的价值加以比较,使用户能够将所公布的基线作为基本数据作为基本的统计。