Quantum network communication is challenging, as the No-cloning theorem in quantum regime makes many classical techniques inapplicable. For long-distance communication, the only viable communication approach is teleportation of quantum states, which requires a prior distribution of entangled pairs (EPs) of qubits. Establishment of EPs across remote nodes can incur significant latency due to the low probability of success of the underlying physical processes. The focus of our work is to develop efficient techniques that minimize EP generation latency. Prior works have focused on selecting entanglement paths; in contrast, we select entanglement swapping trees--a more accurate representation of the entanglement generation structure. We develop a dynamic programming algorithm to select an optimal swapping-tree for a single pair of nodes, under the given capacity and fidelity constraints. For the general setting, we develop an efficient iterative algorithm to compute a set of swapping trees. We present simulation results which show that our solutions outperform the prior approaches by an order of magnitude and are viable for long-distance entanglement generation.
翻译:量子网络通信具有挑战性,因为量子系统中的无弦理论使许多古典技术无法适用。对于长距离通信,唯一可行的通信方法是量子状态的传送,这需要事先分配 ⁇ 的缠绕对配方。在远端节点上建立电源可因基本物理过程成功概率低而产生显著的悬浮。我们的工作重点是开发高效的迭代算法,最大限度地减少EP的生成时间。先前的工作重点是选择缠绕路径;相比之下,我们选择缠绕树-更准确地表示纠缠缠关系生成结构。我们开发动态的编程算法,在给定的能力和忠诚制约下,为单对节点选择最佳互换树。在一般情况下,我们开发一种高效的迭代算法,以计算一套互换树木。我们展示的模拟结果显示,我们的解决办法以数量顺序超越了先前的方法,对于长距离缠绕的生成是可行的。