Q-learning suffers from overestimation bias, because it approximates the maximum action value using the maximum estimated action value. Algorithms have been proposed to reduce overestimation bias, but we lack an understanding of how bias interacts with performance, and the extent to which existing algorithms mitigate bias. In this paper, we 1) highlight that the effect of overestimation bias on learning efficiency is environment-dependent; 2) propose a generalization of Q-learning, called \emph{Maxmin Q-learning}, which provides a parameter to flexibly control bias; 3) show theoretically that there exists a parameter choice for Maxmin Q-learning that leads to unbiased estimation with a lower approximation variance than Q-learning; and 4) prove the convergence of our algorithm in the tabular case, as well as convergence of several previous Q-learning variants, using a novel Generalized Q-learning framework. We empirically verify that our algorithm better controls estimation bias in toy environments, and that it achieves superior performance on several benchmark problems.


翻译:Q- 学习存在高估偏差, 因为它使用最大估计动作价值来接近最大行动价值。 已经提出了计算法, 以减少高估偏差, 但我们不了解偏差如何与业绩相互作用, 以及现有算法在多大程度上减轻偏差。 在本文中, 我们强调高估偏差对学习效率的影响取决于环境; 2) 提议对Q- 学习进行概括化, 称为 emph{ Maxmin Q- learning}, 提供灵活控制偏差的参数; 3) 理论上表明, Maxmin Q 学习有一个参数选择, 导致不偏袒的估计, 其近似差异小于 Q- 学习; 4) 证明我们算法在表案上的趋同, 以及以前几个Q- 学习变体的趋同, 使用新的通用的Q- 学习框架。 我们从经验上证实, 我们的算法更好地控制了对致命环境中的偏差的估计, 并且它在若干基准问题上取得了优的业绩。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年7月15日
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
16+阅读 · 2020年12月4日
专知会员服务
28+阅读 · 2020年11月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
73+阅读 · 2020年4月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Nested Policy Reinforcement Learning
Arxiv
0+阅读 · 2021年10月6日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年7月15日
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
16+阅读 · 2020年12月4日
专知会员服务
28+阅读 · 2020年11月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
73+阅读 · 2020年4月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员