The connectivity and resource-constrained nature of single-board devices opens up to cybersecurity concerns affecting Internet of Things (IoT) scenarios. One of the most important issues is the presence of evil IoT twins. Evil IoT twins are malicious devices, with identical hardware and software specifications to authorized ones, that can provoke sensitive information leakages, data poisoning, or privilege escalation in IoT scenarios. Combining behavioral fingerprinting and Machine/Deep Learning (ML/DL) techniques is a promising approach to identify evil IoT twins by detecting minor performance differences generated by imperfections in manufacturing. However, existing solutions are not suitable for single-board devices because they do not consider their hardware and software limitations, underestimate critical aspects such as fingerprint stability, and do not explore the potential of ML/DL techniques. To improve it, this work proposes an ML/DL-oriented methodology that uses behavioral fingerprinting to identify identical single-board devices. The methodology leverages the different built-in components of the system, comparing their internal behavior with each other to detect variations that occurred in manufacturing processes. The validation has been performed in a real environment composed of identical Raspberry Pi 4 Model B and Raspberry Pi 3 Model B+ devices, obtaining a 91.9% average TPR with an XGBoost model and achieving the identification for all devices by setting a 50% threshold in the evaluation process. Finally, a discussion compares the proposed solution with related work and provides important lessons learned and limitations.
翻译:单板装置的连通性和资源限制性质使网络安全受到关注,影响到互联网对物(IoT)的情景。最重要的问题之一是存在邪恶的IoT双胞胎。邪恶的IoT双胞胎是恶性装置,其硬件和软件规格与授权的硬件和软件规格相同,在IoT情景中可能引起敏感的信息泄漏、数据中毒或特权升级。将行为指纹和机器/深入学习(ML/DL)技术结合起来,通过发现制造过程中的不完善造成的微小性能差异,发现邪恶的IoT双胞胎(ML/DL)技术是查明邪恶的Iot双胞胎(IoT双胞胎)的一个很有希望的方法。然而,现有解决方案不适合单机装置,因为它们不考虑硬件和软件的局限性,低估指纹稳定性等关键方面,不探讨ML/DL技术的潜力。为了改进这些功能,这项工作提出了一种面向行为的ML/DL/DL方法,使用行为指纹来识别相同的单一的单一装置。该方法利用了系统的不同内部内部行为,将其内部行为与每个过程进行比较,以发现制造过程中出现的差异。在现实环境中进行验证,在一种真正的环境上进行了对比,一个由相同的Rasp·Pasp Pi4级标准进行对比,一个相同的标准进行一个模型进行一个重要评估,而一个相同的标准,而最后的模型进行一个比比一个类似的模型,一个比一个相同的标准,一个相同的标准,一个比一个比一个相同的标准,一个相同的标准,一个比一个比一个比一个比一个比一个比一个比一个相同的标准,一个比一个比一个比一个比一个比一个标准,一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个标准,一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个比一个