There is abundant interest in assessing the joint effects of multiple exposures on human health. This is often referred to as the mixtures problem in environmental epidemiology and toxicology. Classically, studies have examined the adverse health effects of different chemicals one at a time, but there is concern that certain chemicals may act together to amplify each other's effects. Such amplification is referred to as synergistic interaction, while chemicals that inhibit each other's effects have antagonistic interactions. Current approaches for assessing the health effects of chemical mixtures do not explicitly consider synergy or antagonism in the modeling, instead focusing on either parametric or unconstrained nonparametric dose response surface modeling. The parametric case can be too inflexible, while nonparametric methods face a curse of dimensionality that leads to overly wiggly and uninterpretable surface estimates. We propose a Bayesian approach that decomposes the response surface into additive main effects and pairwise interaction effects, and then detects synergistic and antagonistic interactions. Variable selection decisions for each interaction component are also provided. This Synergistic Antagonistic Interaction Detection (SAID) framework is evaluated relative to existing approaches using simulation experiments and an application to data from NHANES.


翻译:在评估多种接触对人类健康的共同影响方面,人们非常有兴趣评估多重接触对人类健康产生的共同影响,这常常被称为环境流行病学和毒理学中的混合物问题。典型地说,各项研究一次一次检查了不同化学品对健康的不利影响,但人们担心某些化学品可能会共同行动,扩大彼此的影响。这种放大被称为协同互动,而抑制彼此影响的化学品则具有对立的相互作用。目前评估化学混合物对健康的影响的方法并不明确考虑到模型中的协同作用或对立,而是侧重于模拟中的协同作用或对立,而是侧重于对准或未受限制的非对准剂量反应表面模型。参数案例可能过于僵硬,而非对准方法可能面临一个维度的诅咒,导致过度的和不相容的地表估计。我们提出一种巴伊西亚办法,将反应表面分解为主要添加效应和对立的互动效应,然后检测协同和对立的相互作用。我们还提供了每种互动组成部分的变量选择决定。从模拟到数据模拟(SAHISES)框架的现有数据应用是相对评估的。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月21日
Arxiv
0+阅读 · 2022年11月21日
Arxiv
0+阅读 · 2022年11月20日
Arxiv
0+阅读 · 2022年11月17日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员